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Received signal with 1 path 
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 In particular we have: 
 ρi   amplitude 
	

θi   phase 
 fi   Doppler freq. 	



 
 

 
	

si, ti  lenth,  delay 
 χi   dicertion of arrival 
 ψi   dicertion of departure 
	

	



Complex number representing the received signal (current) : 

(of course it is a funcion of the current IT at the transmitter end) 
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•  In the narrowband case the new signal at the Rx is still a sinusoid, but with 
amplitude and phase given by the coherent sum (1). Time does not appear. 

•  In the wideband case, i.e. when a transmitted signal  is modulated on the 
carrier we have to include the MO-DEM and consider the time domain. 

Received signal with Nr paths (1/2) 

Tx Rx 

Radio Channel 

Propagation channel 
MO- DEM- u(t) v(t) 
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x(t) y(t) 
H(F) ; h(t) 

u(t) v(t) 
H+(f) ; h0(t) 
 f=F-f0 

 u(t) signal’s complex envelope:  
it contains the modulation law 

x t( ) = A t( )cos 2π fot +α t( )−ϕo⎡⎣ ⎤⎦ =

= Re u t( )e j2π f0t{ }
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Received signal with Nr paths (2/2) 
•  Not only the carrier has a new amplitude and phase now, but different 

propagation delays of different paths create echoes of the modulating 
signal at the Rx! 

•  The baseband- or lowpass-equivalent radio channel must be considered 
now: 

Tx Rx 

lowpass-equivalent radio channel  



Input-Output Multipath  Channel Functions 
  The presence of multipath can be formally described by the some proper 

“I/O Channel Functions” that can be associated with the radio channel 

  hp1 - discrete channel: Nr rays/paths 
hp2- static channel: channel properties don’t vary in time  terminals 
don’t move (in practice, fluctuations in time can be neglected during 
transmission) 

H(f), h(t) 
         H+(f) ; h0(t) 

y(t) ?? 

  The I/O channel functions establish a correspondence between the input 
and the output signals, i.e. formulates the effects of the environment on 
the propagating signal 

v(t) ?? 

x(t) 

u(t) 



Channel Lowpass Impulse Response (1/2) 
  According to hp 1-2, the i-th path (i=1,.., Nr) introduces: 

  amplitude loss (ρi) due to the attenuation produced by propagation 
and by the interactions between the wave and the environment along 
the path; 

  time shift (ti) due to propagation delay; 
  phase shift (θi) due to the phase change along the path;   
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Channel Lowpass Impulse Response (2/2) 
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  v(t) represents the complex envelope of the received signal: 

h0 t( ) ≡ ρi δ t − ti( )e j θi−2π f0 ⋅ti( )
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Channel lowpass impulse response 



Channel low-pass and band-pass transfer functions 
  The Fourier-transform of h0(t) represents the channel low-pass transfer 

function  H0(f) 

H 0 f( ) = ℑ h0 t( )⎡⎣ ⎤⎦ = ρi δ t − ti( )e j θi−2π f0 ⋅ti( ) ⋅e − j2π f ⋅tdt
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  H0(f) is related to the channel transfer function H(f) through the following, 
general relation: 
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  With reference to the signals complex envelope: 

  Because of the multipath and different propagation delays, the radio 
channel is affected by time dispersion at the Rx. 

  In digital communication systems, symbols may overlap at the receiver, 
thus producing the so called intersymbol interference - ISI (avoided only 
if TS>>Δt=ti,max-ti,min) 

t 

|u(t)| : input 
|v(t)| : output 

TS 

Channel Time Dispersion (time domain) 

( ) ( ) ( )∑
=

⋅π−θ⋅−⋅ρ=
r

i0i
N

1i

tf2j
ii ettutv



 Equivalent low-pass channel transfer function 

  
H f( ) = F h t( ){ } = ρi e− j2π f ti e − j2π f0ti+ jθi( )
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Channel frequency selectivity (frequency domain) 

  Because of the multipath and different propagation delays, the radio 
channel frequency response is non-flat at the Rx distortion for 
wideband signals or frequency-selective fading. 

  If the signal is narrowband then we have frequency-flat fading 

 Note: we neglect now the footer “0” we always refer to 
the low-pass functions 



Example: 2 paths 

  
H (F ) = 1+

ρ2

ρ1

e− j 2π f + f0( )t2 −ϑ2{ } = 1+ ρe− j 2π FΔt −ϑ{ }

 The time origin is arbitrary, therefore we can choose t1 = θ1= 0.  Then we 
can normalze w.r.t. the amplitude of the first path: 

 Thus the frequency response module is: 

  
H F( ) = 1+ ρcos(2πFΔt −θ)⎡⎣ ⎤⎦

2
+ ρ2 sin2(2πFΔt −θ) = 1+ ρ2 + 2ρcos(2πFΔt −θ)

2π F0kΔt -θ = (2k + 1) π 
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Flat fading 
condition: 

Notches of |H(F)|: 

2π (F0 k+1-F0 k) Δt = 2π→ ΔF0= (F0 k+1-F0 k) = 1/Δt  
Distance between two notches: 

ΔF0=1/Δt  ≈ Bc 
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1 ρ−
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 Real-world h(t) (e.g: measured) is a time- continuous function. The 
following functions can therefore be defined: 

 It’s the deterministic power-delay profile 
 If an estimate of the power-delay profile for a given environment is needed, 
then by averaging N samples of p(t) for different Tx-Rx positions over the 
environment we can get : 

q t( ) ≈ 1N pi t( )
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Wideband channel parmeters (1/2) 
 

 mean power-delay profile 
  

p t( ) = h t( ) 2

h t( ) 2
dt∫

  [W/s];       it's normalized: p t( )dt =1∫



RMS delay spread (DS) 

DS = p t( ) t −TM 0( )2
dt∫ TM 0 = p t( )t dt∫    (deterministic DS)

 Channel time-dispersion can be estimated through the following parameters: 

 DS is simply the standard deviations of p or q interpreted as a pdf.  
 Moreover the following frequency-coherence parameter can be derived 

1
cB DS


Coherence bandwidth Bc 

Wideband channel parmeters (2/2) 
 

DS = q t( ) t −TM 0( )2
dt∫ TM 0 = q t( )t dt∫    (average DS)



h t( ) = ρi δ t − ti( )e j −2π f0 ⋅ti+θi( )
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Since h(t) is a discrete function which is defined only for t={ti}, and therefore 
the impulses do not overlap, we have: 
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Discrete case (2/4) 
|h(t)| 

t ti 

ρi 

were the last equal sign is due to the fact that the double products at the left 
hand side are non-zero only when i=j. Also, for simplicity we have assumed 
that δ 2 t − ti( ) =  δ t − ti( )

then 



Ideal wideband channel parameters (discrete case) 

 Using the time-discrete channel impulse response, derived for example from a 
ray tracing program or with an ideal, infinite bandwidth system, the 
deterministic wideband channel parameters can be defined as follows: 
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 Power delay profile 



Example of deterministic power-delay 
profile 



Fourier-related domains 
The channel transfer functions have the form: 

Μ x( ) = δ x − xi( ) f ...( )
i=1

N

∑     ⇒
x→F ±1→y

   Ν y( ) = e j2π yxi f ...( )
i=1

N

∑

 Since the Fourier transform of a delayed δ is an exponential, we always have 
such a relation between Fourier-related domains. 

 
 Vice-versa if the functional dependance is exponential, then the Fourier 
transform gives a δ-dependance in the transformed domain 
  

Fδ-dependance                    e-dependance  

|h(t)| 

t 

|H(f)| 

f

F
Es: 



Extension to the space domain (1/4) 

 Each ray has one and only one angle of arrival. Therefore we can extrapolate 
the angle-dependent impulse response (ex: azimuth only) 

h(t,φ) = ρiδ t − ti⎡⎣ ⎤⎦δ φ −φi⎡⎣ ⎤⎦e
j −2π f0ti+ϑi{ }
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 Also the angle-dependent transfer function can be defined: 

H ( f ,φ) = ρiδ φ −φi⎡⎣ ⎤⎦e
j −2π f + f0( )ti+ϑi{ }

i
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Similarly the elevation could be considered. 
Also, the angle of departure could be considered in a similar way 



Extension to the space domain (2/4) 
 What is the F-related domain of Φ? 
 It is space. We get an exponential dependence in the space domain (Fourier 
Optics, not covered here): 

  
⇒     h(t,s) = ρiδ t − ti⎡⎣ ⎤⎦e− j2πφise j −2π f0ti+ϑi{ }
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Φ	



 Φ can also be called 
spatial- frequency 



Signal envelope 

Φ	



Signal envelope 

Φ	



Ex. 1:  one wave in arrival 

Ex 2:  two opposite waves in arrival 

 The extreme case is the Rayleigh case: a very large number of waves uniformly 
distributed in Φ → Rayleigh fading along s. 

s 

s 

Extension to the space domain (3/4) 



Extension to the space domain (4/4) 
Let’s consider now the angle-dependent low-pass channel transfer function: 

It can be F-transformed in the angle domain to obtain : 

s 

Therefore H(s) is of the e-kind in space. We have therefore space-selective 
multipath fading or fast fading 

H(s)
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H ( f ,φ) = ρiδ φ −φi⎡⎣ ⎤⎦e
j −2π f + f0( )ti+ϑi{ }

i
∑  



Power-angle profile 
 The power-azimuth profile can be defined: 

In the discrete case the power-azimuth profile has the simple form: 

pφ φ( ) = H φ( ) 2

H φ( ) 2 dφ∫
;       H φ( ) = H f = 0,φ( )
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Through the power-angle profile the Angle-Spread can be defined 



 Mean angle (azimuth) of arrival: 
 
 
 

 RMS Azimuth Spread: 
 
 
 
 

 In the discrete case we have: 
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The reference system yielding 
to the minimum AS should 
always be adopted. In this 
case x’, y’.  

Angle spread problem: 
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Each direction can be represented 
by a unit vector                     . The 
initial point of    is anchored at 
the reference location O, while its 
tip is located on a sphere of unit 
radius centered on O (see figure) 
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3D Angle-spread 



 Mean Direction Of Arrival (DOA):  
 
 

 3D angle spread[*]: 
 
 

 (the last equality results from:            ) 
 

 In the discrete case the definitions above become: 
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3D Angle-spread (II) 
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     does not depend on the choice of the reference system in the RX location 

 
  provides a 3D description of the angle dispersion of the channel. 

  Notice that, in general, results: 
  
 Therefore it has the meaning of percentage of the whole solid angle 

σΩ


σΩ


[ ]0 ,  1σΩ ∈

3D Angle-spread (III) 

A completely similar formulation holds for the angle of departure 


