
Deterministic radio propagation 
modeling and ray tracing 

1)   Introduction to deterministic propagation modelling 

2)   Geometrical Theory of Propagation I - The ray concept – Reflection 
and transmission 

3)   Geometrical Theory of Propagation II - Diffraction, multipath 

4)   Ray Tracing I 

5)   Ray Tracing II – Diffuse scattering modelling 

6)   Deterministic channel modelling I 

7)   Deterministic channel modelling II – Examples 

8)   Project  - discussion 



Diffraction 

Microcell 

Macrocell 

Diffuse 
scattering 

Reflection 

Deterministic multipath channel 
modelling 

(static channel case) 



Received signal with 1 path 
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 In particular we have: 
 ρi   amplitude 
	
θi   phase 
 fi   Doppler freq. 	


 
 

 
	
si, ti  lenth,  delay 
 χi   dicertion of arrival 
 ψi   dicertion of departure 
	
	


Complex number representing the received signal (current) : 

(of course it is a funcion of the current IT at the transmitter end) 
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•  In the narrowband case the new signal at the Rx is still a sinusoid, but with 
amplitude and phase given by the coherent sum (1). Time does not appear. 

•  In the wideband case, i.e. when a transmitted signal  is modulated on the 
carrier we have to include the MO-DEM and consider the time domain. 

Received signal with Nr paths (1/2) 

Tx Rx 

Radio Channel 

Propagation channel 
MO- DEM- u(t) v(t) 

x(t) y(t) 

 IT  IR



x(t) y(t) 
H(F) ; h(t) 

u(t) v(t) 
H+(f) ; h0(t) 
 f=F-f0 

 u(t) signal’s complex envelope:  
it contains the modulation law 

x t( ) = A t( )cos 2π fot +α t( )−ϕo⎡⎣ ⎤⎦ =

= Re u t( )e j2π f0t{ }
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Received signal with Nr paths (2/2) 
•  Not only the carrier has a new amplitude and phase now, but different 

propagation delays of different paths create echoes of the modulating 
signal at the Rx! 

•  The baseband- or lowpass-equivalent radio channel must be considered 
now: 

Tx Rx 

lowpass-equivalent radio channel  



Input-Output Multipath  Channel Functions 
  The presence of multipath can be formally described by the some proper 

“I/O Channel Functions” that can be associated with the radio channel 

  hp1 - discrete channel: Nr rays/paths 
hp2- static channel: channel properties don’t vary in time  terminals 
don’t move (in practice, fluctuations in time can be neglected during 
transmission) 

H(f), h(t) 
         H+(f) ; h0(t) 

y(t) ?? 

  The I/O channel functions establish a correspondence between the input 
and the output signals, i.e. formulates the effects of the environment on 
the propagating signal 

v(t) ?? 

x(t) 

u(t) 



Channel Lowpass Impulse Response (1/2) 
  According to hp 1-2, the i-th path (i=1,.., Nr) introduces: 

  amplitude loss (ρi) due to the attenuation produced by propagation 
and by the interactions between the wave and the environment along 
the path; 

  time shift (ti) due to propagation delay; 
  phase shift (θi) due to the phase change along the path;   
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Channel Lowpass Impulse Response (2/2) 
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  v(t) represents the complex envelope of the received signal: 

h0 t( ) ≡ ρi δ t − ti( )e j θi−2π f0 ⋅ti( )
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Channel lowpass impulse response 



Channel low-pass and band-pass transfer functions 
  The Fourier-transform of h0(t) represents the channel low-pass transfer 

function  H0(f) 

H 0 f( ) = ℑ h0 t( )⎡⎣ ⎤⎦ = ρi δ t − ti( )e j θi−2π f0 ⋅ti( ) ⋅e − j2π f ⋅tdt
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  H0(f) is related to the channel transfer function H(f) through the following, 
general relation: 
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  With reference to the signals complex envelope: 

  Because of the multipath and different propagation delays, the radio 
channel is affected by time dispersion at the Rx. 

  In digital communication systems, symbols may overlap at the receiver, 
thus producing the so called intersymbol interference - ISI (avoided only 
if TS>>Δt=ti,max-ti,min) 

t 

|u(t)| : input 
|v(t)| : output 

TS 

Channel Time Dispersion (time domain) 
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 Equivalent low-pass channel transfer function 

  
H f( ) = F h t( ){ } = ρi e− j2π f ti e − j2π f0ti+ jθi( )
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Channel frequency selectivity (frequency domain) 

  Because of the multipath and different propagation delays, the radio 
channel frequency response is non-flat at the Rx distortion for 
wideband signals or frequency-selective fading. 

  If the signal is narrowband then we have frequency-flat fading 

 Note: we neglect now the footer “0” we always refer to 
the low-pass functions 



Example: 2 paths 

  
H (F ) = 1+

ρ2

ρ1

e− j 2π f + f0( )t2 −ϑ2{ } = 1+ ρe− j 2π FΔt −ϑ{ }

 The time origin is arbitrary, therefore we can choose t1 = θ1= 0.  Then we 
can normalze w.r.t. the amplitude of the first path: 

 Thus the frequency response module is: 

  
H F( ) = 1+ ρcos(2πFΔt −θ)⎡⎣ ⎤⎦

2
+ ρ2 sin2(2πFΔt −θ) = 1+ ρ2 + 2ρcos(2πFΔt −θ)

2π F0kΔt -θ = (2k + 1) π 
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Flat fading 
condition: 

Notches of |H(F)|: 

2π (F0 k+1-F0 k) Δt = 2π→ ΔF0= (F0 k+1-F0 k) = 1/Δt  
Distance between two notches: 

ΔF0=1/Δt  ≈ Bc 

B 
F 

1 ρ+

1 ρ−
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 Real-world h(t) (e.g: measured) is a time- continuous function. The 
following functions can therefore be defined: 

 It’s the deterministic power-delay profile 
 If an estimate of the power-delay profile for a given environment is needed, 
then by averaging N samples of p(t) for different Tx-Rx positions over the 
environment we can get : 

q t( ) ≈ 1N pi t( )
i=1
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Wideband channel parmeters (1/2) 
 

 mean power-delay profile 
  

p t( ) = h t( ) 2

h t( ) 2
dt∫

  [W/s];       it's normalized: p t( )dt =1∫



RMS delay spread (DS) 

DS = p t( ) t −TM 0( )2
dt∫ TM 0 = p t( )t dt∫    (deterministic DS)

 Channel time-dispersion can be estimated through the following parameters: 

 DS is simply the standard deviations of p or q interpreted as a pdf.  
 Moreover the following frequency-coherence parameter can be derived 

1
cB DS


Coherence bandwidth Bc 

Wideband channel parmeters (2/2) 
 

DS = q t( ) t −TM 0( )2
dt∫ TM 0 = q t( )t dt∫    (average DS)



h t( ) = ρi δ t − ti( )e j −2π f0 ⋅ti+θi( )
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Since h(t) is a discrete function which is defined only for t={ti}, and therefore 
the impulses do not overlap, we have: 
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Discrete case (2/4) 
|h(t)| 

t ti 

ρi 

were the last equal sign is due to the fact that the double products at the left 
hand side are non-zero only when i=j. Also, for simplicity we have assumed 
that δ 2 t − ti( ) =  δ t − ti( )

then 



Ideal wideband channel parameters (discrete case) 

 Using the time-discrete channel impulse response, derived for example from a 
ray tracing program or with an ideal, infinite bandwidth system, the 
deterministic wideband channel parameters can be defined as follows: 
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 Power delay profile 



Example of deterministic power-delay 
profile 



Fourier-related domains 
The channel transfer functions have the form: 

Μ x( ) = δ x − xi( ) f ...( )
i=1

N

∑     ⇒
x→F ±1→y

   Ν y( ) = e j2π yxi f ...( )
i=1

N

∑

 Since the Fourier transform of a delayed δ is an exponential, we always have 
such a relation between Fourier-related domains. 

 
 Vice-versa if the functional dependance is exponential, then the Fourier 
transform gives a δ-dependance in the transformed domain 
  

Fδ-dependance                    e-dependance  

|h(t)| 

t 

|H(f)| 

f

F
Es: 



Extension to the space domain (1/4) 

 Each ray has one and only one angle of arrival. Therefore we can extrapolate 
the angle-dependent impulse response (ex: azimuth only) 

h(t,φ) = ρiδ t − ti⎡⎣ ⎤⎦δ φ −φi⎡⎣ ⎤⎦e
j −2π f0ti+ϑi{ }
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 Also the angle-dependent transfer function can be defined: 

H ( f ,φ) = ρiδ φ −φi⎡⎣ ⎤⎦e
j −2π f + f0( )ti+ϑi{ }

i
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Similarly the elevation could be considered. 
Also, the angle of departure could be considered in a similar way 



Extension to the space domain (2/4) 
 What is the F-related domain of Φ? 
 It is space. We get an exponential dependence in the space domain (Fourier 
Optics, not covered here): 

  
⇒     h(t,s) = ρiδ t − ti⎡⎣ ⎤⎦e− j2πφise j −2π f0ti+ϑi{ }
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s Signal envelope 

Φ	


 Φ can also be called 
spatial- frequency 



Signal envelope 

Φ	


Signal envelope 

Φ	


Ex. 1:  one wave in arrival 

Ex 2:  two opposite waves in arrival 

 The extreme case is the Rayleigh case: a very large number of waves uniformly 
distributed in Φ → Rayleigh fading along s. 

s 

s 

Extension to the space domain (3/4) 



Extension to the space domain (4/4) 
Let’s consider now the angle-dependent low-pass channel transfer function: 

It can be F-transformed in the angle domain to obtain : 

s 

Therefore H(s) is of the e-kind in space. We have therefore space-selective 
multipath fading or fast fading 

H(s)

  
H ( f ,s) = ρie

− j2πφise j −2π f + f0( )ti+ϑi{ }
i
∑  

H ( f ,φ) = ρiδ φ −φi⎡⎣ ⎤⎦e
j −2π f + f0( )ti+ϑi{ }
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Power-angle profile 
 The power-azimuth profile can be defined: 

In the discrete case the power-azimuth profile has the simple form: 

pφ φ( ) = H φ( ) 2

H φ( ) 2 dφ∫
;       H φ( ) = H f = 0,φ( )
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Through the power-angle profile the Angle-Spread can be defined 



 Mean angle (azimuth) of arrival: 
 
 
 

 RMS Azimuth Spread: 
 
 
 
 

 In the discrete case we have: 
 
 
 
 
 

  

AS = φ −φ( )2 pφ φ( )dφ
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Angle-Spread 

φ = φ pφ φ( )dφ
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The reference system yielding 
to the minimum AS should 
always be adopted. In this 
case x’, y’.  

Angle spread problem: 



  

( ) ( ) ( ) ( ) ( ) ( ), cos sin ,sin sin ,cos
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Each direction can be represented 
by a unit vector                     . The 
initial point of    is anchored at 
the reference location O, while its 
tip is located on a sphere of unit 
radius centered on O (see figure) 
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3D Angle-spread 



 Mean Direction Of Arrival (DOA):  
 
 

 3D angle spread[*]: 
 
 

 (the last equality results from:            ) 
 

 In the discrete case the definitions above become: 
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3D Angle-spread (II) 

1Ω =


3D power-angle profile ( )pΩ Ω




     does not depend on the choice of the reference system in the RX location 

 
  provides a 3D description of the angle dispersion of the channel. 

  Notice that, in general, results: 
  
 Therefore it has the meaning of percentage of the whole solid angle 

σΩ


σΩ


[ ]0 ,  1σΩ ∈

3D Angle-spread (III) 

A completely similar formulation holds for the angle of departure 


