Deterministic radio propagation
modeling and ray tracing

1)
2)

3)
4)
5)

6) Deterministic channel modelling I

7) _Deterministic channel modelling IT — Examples

8) _Project - discussion




Deterministic multipath channel

modelling
(static channel case)
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Received signal with 1 path
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Complex number representing the received signal (current) :
fﬁe(YR)gR(H% ¢§3) o (i
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(of course it is a funcion of the current I at the transmitter end)

In particular we have:
o) amplitude S;, t.

1 1

lenth, delay

0. phase % dicertion of arrival

/A dicertion of departure




Received signal with N_paths (1/2)

In the narrowband case the new signal at the Rx is still a sinusoid, but with
amplitude and phase given by the coherent sum (1). Time does not appear.

In the wideband case, 1.e. when a transmitted signal 1s modulated on the
carrier we have to include the MO-DEM and consider the time domain.




Received signal with N paths (2/2)

* Not only the carrier has a new amplitude and phase now, but different
propagation delays of different paths create echoes of the modulating
signal at the Rx!

* The baseband- or lowpass-equivalent radio channel must be considered
Nnow:

x(t)=A()cos| 2zt + (1) -, | =
:Re{u(t)ejzﬂfot}

u(t) signal’s complex envelope: Tx ﬂ, Rx
1t contains the modulation law

X(t) y(t)
— HE);h(t) —

t t
o) H'() ; hy(t) R

u(1)=A(t)e' Ve p




Input-Output Multipath Channel Functions

« The presence of multipath can be formally described by the some proper
“I/O Channel Functions” that can be associated with the radio channel

« hpl - discrete channel: N_rays/paths
hp2- static channel: channel properties don’t vary in time =» terminals
don’t move (in practice, fluctuations in time can be neglected during
transmission)

t t) 77
x(t) H(D), h(o) y(t)
u(t) H'(f) ; hy(t) v(t) 22

« The I/O channel functions establish a correspondence between the input
and the output signals, 1.e. formulates the effects of the environment on
the propagating signal



Channel Lowpass Impulse Response (1/2)

« According to hp 1-2, the 1-th path (1=1,.., N,) introduces:

- amplitude loss (p;) due to the attenuation produced by propagation
and by the intera¢tions between the wave and the environment along
the path;

- time shift (t.) du¢ to propagation delay;

. phase shift (0,
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Channel Lowpass Impulse Response (2/2)

« v(t) represents the complex envelope of the received signal:

Nr .
v(t)=Y.p;-ult-t;) o2ty 1)

1=l

<ut-t)= [8E-t; ) ut-E)dE (well known property of the §-distribution)

4
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izl —00 —00 1:1

Nr 9
! ] h, (t) = Z p.0 (t —t, )ej 0-221%) | Channel lowpass impulse response
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Channel low-pass and band-pass transfer functions

+ The Fourier-transform of hy(t) represents the channel low-pass transfer
function Hgy(1)

HO(f) 9 =27 fyt ) —]27L'ftdt Zp 27t f+f0)t 9)

g'——oX

l=1

« Hy(f) 1s related to the channel transfer function H(f) through the following,

general relation: (N ( )
. ' —j 2TCf'ti—9i
Hy-6;) 720 20 ¢ B
HO=isceoty) <o =
0 Zpi e—J(an-ti+Oi) F<0
A -
[Ho(D)]




Channel Time Dispersion (time domain)

« With reference to the signals complex envelope:

'T|u(t)| : input
__[v(t)] : output

N, |
V(t): z 0; 'U.(t _ ti ) eJ(91—21tf0-ti)
=1

« Because of the multipath and different propagation delays, the radio
channel is affected by time dispersion at the Rx.
« In digital communication systems, symbols may overlap at the receiver,

thus producing the so called intersymbol interference - ISI (avoided only
if TS>At=t,

1 max 1 1’1’111’1)



Channel frequency selectivity (frequency domain)

Equivalent low-pass channel transfer function

H(f)

H(r)= F{(1)}= X & o/ e

Note: we neglect now the footer “0” we always refer to ’ | £

the low-pass functions

« Because of the multipath and different propagation delays, the radio
channel frequency response is non-flat at the Rx =>distortion for
wideband signals or frequency-selective fading.

« If the signal 1s narrowband then we have frequency-flat fading




Example: 2 paths

The time origin 1s arbitrary, therefore we can choose t; = 0,= 0. Then we
can normalze w.r.t. the amplitude of the first path:

H(F)=1+ &e—j{zn(ﬂfo)@—ﬁz} L pe—j{27rFAt -0}

Py
Thus the frequency response module is:

‘H(F)‘ = \/[1+ pcos(2rF At — 0)]2 +p’sin*QrFAt —0) = \/1 +p’ +2pcos2rFAt —0)

Notches of [H(F)|: Distance between two notches:
2t F,At-0=2k+ 1) = 2 (F, .. -F, ) At =2n— AF=(F,.-F,.) = l/At
\JH (F) .
1+p L Flat fading
/ Y: V Y Y \ condition:
1_ p | | 1
'R’ BB =~—
B > LY
> F

"AF=1/At ~ B,




Wideband channel parmeters (1/2)

Real-world h(t) (e.g: measured) is a time- continuous function. The
following functions can therefore be defined:

)
i

It’s the deterministic power-delay profile

If an estimate of the power-delay profile for a given environment is needed,
then by averaging N samples of p(t) for different Tx-Rx positions over the
environment we can get :

TORE>WAQ

mean power-delay profile

P( [W/s]; 1t's normalized: I p(t)dt =1




Wideband channel parmeters (2/2)

Channel time-dispersion can be estimated through the following parameters:

RMS delay spread (DS)

DS = \/_[p(z)(t - TMO)2 dt T, = _[p(z)tdt (deterministic DS)

DS:\/J.q(t)(t—TMO)zdt TMozjq(t)tdt (average DS)

DS i1s simply the standard deviations of p or g interpreted as a pdf.
Moreover the following frequency-coherence parameter can be derived

Coherence bandwidth B,
1
B, =—
DS




Discrete case (2/4)

" | h(o)]4
h(r)=Y p.8(1—1,)e! > ) L
= [Tl
Gt

Since h(t) 1s a discrete function which 1s defined only for t={t.}, and therefore
the impulses do not overlap, we have:

N,
‘_zpét t J(=2mfyt,46,) Z‘P5t t j(2mfy;+6;)
i1
then
RS Y 7 S 2
A (1) :(Epi 87 (1- z)j(Ep .8 (t t)j=2pi S(t-t,)
i=1 =l i=j=1

were the last equal sign is due to the fact that the double products at the left
hand side are non-zero only when 1=j. Also, for simplicity we have assumed

. that 5 (t-t,)= 6(t-t,)




Ideal wideband channel parameters (discrete case)

Using the time-discrete channel impulse response, derived for example from a
ray tracing program or with an ideal, infinite bandwidth system, the
deterministic wideband channel parameters can be defined as follows:

Power delay profile
N,
>.p;8(t-1)
P (t): =
2.P;
i=1
Delay Spread
T
where: p, = p 7
T0T 2 pz
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Fourier-related domains

The channel transfer functions have the form:

N x%Fﬂ%y N

Es: [h(®)] 7? HD)|
il it

! f

Since the Fourier transform of a delayed 0 is an exponential, we always have
such a relation between Fourier-related domains.

Vice-versa if the functional dependance is exponential, then the Fourier
transform gives a d0-dependance in the transformed domain

O-dependance é e-dependance




Extension to the space domain (1/4)

Each ray has one and only one angle of arrival. Therefore we can extrapolate
the angle-dependent impulse response (ex: azimuth only)

015 po[1-4 JoTo- e

Also the angle-dependent transfer function can be defined:

H(f.9)= Y plo-g e/

Similarly the elevation could be considered.
Also, the angle of departure could be considered in a similar way




Extension to the space domain (2/4)

What is the F-related domain of @?

It 1s space. We get an exponential dependence in the space domain (Fourier
Optics, not covered here):

o hs)= Y o=t |e it intura)

® can also be called
spatial- frequency

Signal envelope




Extension to the space domain (3/4)

Ex. 1: one wave in arrival

\ @
: %
Signal envelope : >
S
Ex 2: two opposite waves in arrival

Signal envelope
S

The extreme case 1s the Rayleigh case: a very large number of waves uniformly
distributed in ® — Rayleigh fading along s.




Extension to the space domain (4/4)

Let’ s consider now the angle-dependent low-pass channel transfer function:

H( .9 =3 p8[0-9]¢ A

It can be F-transformed in the angle domain to obtain :
H(f.5)= Y, pe /et ot
, .
i l

Therefore H(s) is of the e-kind in space. We have therefore space-selective
multipath fading or fast fading

[H(s)




Power-angle profile

The power-azimuth profile can be defined:

(o)
Jlrr(o) a0

In the discrete case the power-azimuth profile has the simple form:

Po(9)=

H(¢)=H(f =0.9)

ip125(¢_¢1) N
p,(¢)=""1— =>.7,6(¢-9)
% 7

Through the power-angle profile the Angle-Spread can be defined




Angle-Spread

Mean angle (azimuth) of arrival:

6= 1op,(¢)do

RMS Azimuth Spread:

AS=JT(¢—«?)%¢(¢)OI¢

0

In the discrete case we have:

Angle spread problem:

Ay

The reference system yielding
to the minimum AS should
always be adopted. In this
case X ,y .



3D Angle-spread

82

13‘

(0.0,1)

Direction of incidence
/chamctczized by 2

L9

Each direction can be represented
by a unit vector Q=€2(6,¢). The
initial point of €2 is anchored at
the reference location O, while its
tip 1s located on a sphere of unit
radius centered on O (see figure)

Q=Q(0,¢9)= [cos (¢)sin (6 ),sin (¢ )sin (6 ),cos (6 )]T




3D Angle-spread (II)
Mean Direction Of Arrival (DOA):

<Q> - J Q Pq (Q)dQ Po (Q) 3D power-angle profile
4m

3D angle spread!™!:

(@)

A =0, :\/j Q-(Q) pa (@)a0 :J<‘Q‘2>_

(the last equality results from: ‘Q‘ =1)

In the discrete case the definitions above become:

<Q>:kz]:‘pkék GQZ\/gé—<Q>2pk:\/l—




3D Angle-spread (I1I)

O O does not depend on the choice of the reference system in the RX location

0] O provides a 3D description of the angle dispersion of the channel.
> Notice that, in general, results: O € [O i 1]

Therefore 1t has the meaning of percentage of the whole solid angle

A completely similar formulation holds for the angle of departure




