6. Discrete Linear Stochastic Processes/

Models

6.1. Moving average processes

* Definition:

A random sequence X (n) is a moving average process of order ¢ (MA(q)) if

for any n:

i=1

q
X(n) = Z(n) + Z 0,Z(n—1i)

where Z(n) is a white Gaussian process.

o Transversal filter implementation of a MA(q) process:

Z(n) Unit | Z(n—1) | Unit | Z(n—2) Unit | Z(n—q)
delay delay *ee delay
[ ] eq
[ B
S
» Impulse response of the transversal filter:
An)p= 0(n) h(n)p= L[0(n)]
11 x
» 91
! ]e 0
. -1 0 1 2.7 o2 =1 0 2 4...n

q
Kn) = o(n) + Z Glf)(n — 1)
i=1
» Stability and causality:
Transversal filters are stable and causal.
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* Transfer function of the transversal filter:

q
Hf) =1+ Z 0, exp (—j2Tuf)

i=1

Proof:

q
An) = z 0.z(n—i) +z(n)

T i=1
q
X(f) = 0,exp(—j21if)Z(f) + Z(f)

i=1

q
= {1 + z el.exp(jZTTif)}Z(f)

i=1

L]
* Power spectrum of a MA(q) process:
q 2 5
Syx(f) = |1+ Z 0,exp(—j21Uf)| O,
i=1

* Mean value and autocorrelation function of a MA(q) process:

Ly =0

Ryx (k) = Gzthh(k)

o Example: MA(1)

Zn) ——»f i 200
> X (n)
X(n) = Zn)+Z(n-1) (6,=1)
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- Impulse response and autocorrelation function of the transversal filter

h(n) A
hn) = El : n0{0, 1}
00 ; elsewhere 11
>
-1 0 1 2 3 .. n
Ry, (k) A
H2;  kD{0} 24
Ry (k) =01; kO{-1,1} W
EO ; elsewhere | |
-2 -1 0 1 2 4...>k
- Transfer function:
H(f) = 1+ exp(—j21f) | f1<0.5
= exp(—jTf)[exp (jTf) + exp (—jT)]
= 2exp(—/11) cos(TTf)
|H(f)IA
2
|H(f)| = 2cos (1)
(I/1=0.5)
1 —
-0.5 0 0.5 f
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- Autocorrelation function of X (n):

Ryx (k) = 0 Ry (k)

Ry (KA
20,7 kO 0} 120,
o~ <’ 2
“HoS s kDL 1™
E 0 ; elsewhere >

.2 -1 0 1 2 3 4..k

- Power spectrum of X (n):

S)(X(f)A
_ 2 2 2
SXX(f) O, |H (f)] 40,

= 4022 cos(TTf)2

1 —

0.5 0 0.5 f

6.2. Autoregressive processes

* Definition:
A random sequence X (n) is an autoregressive process of order p (AR(p)) if it
1s WSS and for any #:

p
X(n) =Y @X(n-)+2(n)
i=1

where Z(n) is a white Gaussian process.



* Recursive filter implementation:

(1) > Unit X(n—i

Unit
delay

X(n-2)

LE N ] »-w

Unit
delay

— X (n)

X(n—-p)

* Causal and stable AR processes:

<o

An AR(p) process X (n) is called causal and stable if there exists an infinite

causal and stable transversal filter with impulse response /(#) such that

X(n) = Y h(@)Z(n-1)
i=0

= h(n)*Z(n)

Let us define the polynomial

p .
o)=1-5 @z

i=1

z : complex variable.

Then, the AR process X (n) is causal and stable, if, and only if, the roots of

@(z) are located inside the unit circle, i.e. if @(z) factorizes according to

P .
oz) = [10-pz )

i=1

With|pl.| <l,i=1,..,p.



Location of the roots of @(z) in the complex plane when X () is causal and
stable:

Complex plane

1

1

2

The impulse response of a causal and stable AR(p) process is determined by
the identity

i 1
Wiz ' = —= =21
PR )
i=0
» Transfer function of the recursive filter:
1
Hi —
(f) -
- Z (pl.exp(—j2T[if)
i=1
Proof:
p

() = S x(n-1)+z(n)

i i=1
p
S @exp(—/21f) X (f) + 2(/)

i=1

p
= { Z @, exp (jo[lf):|X(f) +Z(f)

i=1

=
>
I

» Power spectrum of an AR(p) process:

SXX(f) -
1-— z @, exp (—j2TUf)

1=
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Mean value and autocorrelation function of a causal AR(p) process:
If the AR process X (n) is causal,

UXZO

Ryx (k) = 0 Ry (k)

e Example: AR(1):
The first-order recursive filter discussed in the previous chapter with a white
Gaussian process as the input signal generates an AR(1) process.

* Yule-Walker equations:

Letbe £=0:
p
X(n) = Z @, X (n—1)+Z(n)
i=1
p
X(n) X(n—k) = Z QX (n—i)X(n—k)+Z(n)X(n—k)

i=1
p
Z QOE[X(n—i)X(n—k)] +E[Z(n)X(n—k)
i=1
7 2
Ryy(n,n—k) = Z O.R yy(n—i,n—k)+0, d(k)
i=1

E[X(n) X (n—k)]

p
. 2
Ry (k) = Ry (k) = Z QR yy (i—k)+ 0, 0(k)
i=1
Using a vector notation, for 0 < k< p

@
Ryy(k) = [Ryy(1=K) s Ry (p—K)] | .| +0,°8(k)  (6.1)
®p
For k> p:
@
RXX(k) = [RXX(k_l)’ ...,RXX(k—p)] (6.2)
®p
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Let us define

Ryy(D)]
@
o= y = RXX(Z)
0
& _RXX(p)_
Ry (0) Ryy(l) o Ryp(p—1)
N P Ryp(0) o Ryy(p—2)

_RXX(_(p - 1)) RXX(_(p -2)) ... RXX(O) |
Note that I' 1s symmetric.
Then, for £ = 0 Identity (6.1) becomes

T 2
Ryy(0) =y ®+o0,

Inserting k = 1, ..., p in(6.1) yields p identities that can be concatenated in a
matrix form according to

RXX(I)_ Ry,(0) Ry (1) ...RXX(p—l)_ 0
Ryy(2)| _ | Ryy(-1) Ryy(0) .. Ry(p-2)||0,

_RXX(]?)_ _RXX(_(p - 1)) RXX(_(p -2)) ... RXX(O) | (Pp

y=T1o

Comments:

* The feed-back coefficients ()P (pp of the recursiv filter and the variance
o Zz of the white Gaussian input process Z(n) can be computed from
Ry (0), ..., R yy(p) via the Yule-Walker equations and vice-versa.

* The samples R y(k), k > p can be recursively computed from @, ..., @ -
and R y(k—1), ..., R yy(k — p) by using Identity (6.2).



6.3. Autoregressive moving average processes

* Definition:
A random sequence X (») is an autoregressive moving average process
(p, q) th order (ARMA((p, q))) if it is WSS and for any »:

p q
X(n) = Z 0. X(n—i)+ Z 0.Z(n—i)+Z(n)

i=1 i=1

where Z(n) is a white Gaussian process.

 Filter implementation:

X(n—p) | Unit X(n—2) | Unit [X(n—1)] Unit | X(n)

delay RN delay delay

Z(n) | Unit |Z(n—1)| Unit | Z(n—-2) Unit [£(n—q)
> delay > delay ' > delay

>
AD

8, >

P Y
t1 J
\I/‘

N

el {
S\
B
—~~
S
~



* Causal and stable ARMA processes:
An ARMA( p, q) process X (n) is called causal and stable if there exists an

infinite causal and stable transversal filter with impulse response /() such
that

X(n) = Z h(i)Z(n—1i) = h(n)*Z(n)
i=0
Let us define

q P
B(z) =1+ Z Giz_i and o(z)=1- Z (pl.z_i
i=1 i=1
A necessary and sufficient condition for an ARMA( p, ¢ ) process to be causal
and stable is that the polynomial @(z) has its roots inside the unit circle.

The impulse response of a causal and stable ARMA( p, ¢ ) process is then
determined by the identity

S Z_i=M z
P B
i=0

In the above considerations we assume that 8(z) and @(z) have no common
root.

o Transfer function of the filter:

q
1+ z 0, exp (—j2Tuf)
H(f) = —=1

p
1= S @exp(~/2mif)

i=1

Proof: Similar as before.

* Power spectrum of an ARMA(p,q) process:

q
1+ Z 0, exp (—/2Tuf)
i=1 2
p 2
1= Y Qexp(-72rif)

i=1

SXX(f) -

6-10



* Mean value and autocorrelation function of a causal ARMA(p,q) process:
If the ARMA process X (n) is causal,

My = 0

Ryx (k) = 0 Ry (k)

e Importance of ARMA(p,q) processes:
- Because of the linearity property of ARMA(p,q) processes, analytical expres-
sions can be derived which describe their statistical behavior, i.e. their auto-
correlation and power spectrum.

- For any given zero-mean WSS process Y (n) with autocorrelation function
Ry (k) there exists an ARMA(p,q) process X (n) such that

Ryy(k) = Ry (k) |k <K

In this sense, any WSS process can be approximated by an ARMA(p,q)
process.
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