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Chapter 7

Statistical channel parameter estimation



Signal model
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Narrow-band transmission, i.e. Bστ ≪ 1

Y (t) = H(t)u(t) +W (t) ∈ C
M

=

[∫

S2

c(Ω)h(t;Ω)dΩ

]
u(t) + W (t).

■ Y (t): the output signals of the Rx array observed at time instance
t.

■ u(t): scalar function denoting the complex envelope of the
transmitted sounding signal at time t. It is known to the Rx and
that

∫ T
0
u(t)u(t)∗dt = 1, where [·]∗ denotes complex conjugate and

T represents the duration of observation interval
■ H(t): the time-variant response of the SIMO system.
■ h(t;Ω) : (time-variant) DoA spread function of the propagation

channel
■ c(Ω)

.
= [c1(Ω), c2(Ω), . . . , cM(Ω)]T: the responses of the Rx array.



Signal model
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In a scenario where the electromagnetic energy propagates from the Tx
to the Rx via D paths,

■ h(t;Ω) =
D∑
d=1

hd(t;Ω)

■ H(t) fluctuates over the overall sounding period, but remains
constant within individual observation intervals:

H(t)
.
=Hn, t ∈ [tn, tn + T ) and n ∈ [1, . . . , N ].

■ hd(t;Ω), d = 1, . . . , D are constant within individual observation
intervals: hd(t;Ω) = hd(tn;Ω)

.
= hd,n(Ω), t ∈ [tn, tn + T ).

■ Assumption: Uncorrelated complex (zero-mean) orthogonal
stochastic measures

E[h∗d,n(Ω)hd′,n′(Ω′)] = Pd(Ω)δnn′δdd′δ(Ω−Ω′).



Power spectrum model
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■ Pd(Ω)
.
= E[|hd,n(Ω)|2] denotes the direction psdf of the dth path

component.
■ Pd(Ω) = Pd · fd(Ω) with Pd representing the average power of the
dth path component and fd(Ω) being a normalized direction psdf.

■ fd(Ω) coincides with the FB5 pdf

fFB5
(Ω) = C(κ,η)−1 exp{κγT

1Ω+ κ · η[(γT

2Ω)2 − (γT

3Ω)2]},

where κ ≥ 0 represents the concentration parameter and
η ∈ [0, 1/2) is an ovalness factor, C(κ, η) denotes a normalization
constant depending on κ and η, γ1, γ2, and γ3 ∈ R

3 are unit
vectors, the matrix Γ

.
= [γ1,γ2,γ3] is uniquely determined by three

angular parameters θ̄, φ̄ and α according to

Γ=



sin(θ̄) cos(φ̄) − sin(φ̄) cos(θ̄) cos(φ̄)
sin(θ̄) sin(φ̄) cos(φ̄) cos(θ̄) sin(φ̄)

cos(θ̄) 0 − sin(θ̄)





1 0 0
0 cos(α) − sin(α)
0 sin(α) cos(α)


 .



FB5 pdf
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The FB5 pdf with φ̄ = 135◦, θ̄ = 18◦, α = 144◦, κ = 80 and η = 0.375.
The color bar to the right of the plot shows the magnitude expressed in
linear scale.



SAGE algorithm
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■ all unknown model parameters

θ
.
= [P1, P2, . . . , PD, θ̃1, θ̃2, . . . , θ̃D]

with θ̃d
.
= [φ̄d, θ̄d, κd, ηd, αd].

■ Subsets of parameters updated at the different iterations of the
SAGE algorithm: the sets including the parameters characterizing
individual path components, i.e. θd

.
= [Pd, θ̃d] with d = [(i− 1)

modD] + 1
■ Admissible hidden data with θd as

Xd(t)
.
= Hd(t)u(t) +W (t)

=

[∫

S2

c(Ω)hd(t;Ω)dΩ

]
u(t) +W (t). (16)

where Hd(t)
.
=Hd,n =

∫
S2
c(Ω)hd,n(Ω)dΩ.



SAGE algorithm
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■ The output of a correlator

H̃d,n
.
=

∫ tn+T

tn

xd(t)u(t)
∗dt, n = 1, . . . , N

when the input is the observation Xd(t) = xd(t) can be written as

H̃d,n =Hd,n +Nn,

■ Invoking the central limit theorem, the elements of H̃d,n are
assumed to be Gaussian random variables.

■ The vectors H̃d,1, . . . , H̃d,N form a sufficient statistic for the
estimation of θd.



Expectation (E-) step of Iteration i
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■ Compute the expectation of the likelihood of θd conditioned on the

observation Y (t) = y(t) and assuming that θ = θ̂
[i−1]

:

Q(θd|θ̂
[i−1]

)
.
= E

[
Λ(Ωd;xd)|Y (t) = y(t), θ̂

[i−1]
)
]
. (17)

where

◆ θ̂
[i−1]

denotes the parameter estimates obtained in the
(i− 1)th iteration and

◆ Λ(Ωd;xd) represents the log-likelihood function of Ωd given an
observation Xd(t) = xd(t)

■

Q(θd|θ̂
[i−1]

) =− ln|ΣH̃d
(θd)| − tr

[
(ΣH̃d

(θd))
−1 · Σ̂H̃d

(θ̂
[i−1]

)
]
,

(18)

where tr[·] is the trace of the matrix given as an argument



Expectation (E-) step of Iteration i

Graduate course: Propagation Channel Characterization, Parameter Estimation and Modeling 196 / 199

■ Q(θd|θ̂
[i−1]

) = −ln|ΣH̃d
(θd)| − tr

[
(ΣH̃d

(θd))
−1 · Σ̂H̃d

(θ̂
[i−1]

)
]
,

where
◆ ΣH̃d

(θd): the covariance matrix of H̃d,n:

ΣH̃d
(θd) = Pd

∫
S2
c(Ω)c(Ω)Hfd(Ω)dΩ+ σ2

wIM

◆ Σ̂H̃d
(θ) is the conditional covariance matrix of H̃d,n given the

observation y(t) for θ:

Σ̂H̃d
(θ̂

[i]
) =ΣH̃d

(θ̂
[i]

d ) +ΣH̃d
(θ̂

[i]

d )
[
ΣH̃(θ̂

[i]
)
]−1

(Σ̂H̃−

ΣH̃d
(θ̂

[i]

d )) ·
[
ΣH̃(θ̂

[i]
)
]−1

ΣH̃d
(θ̂

[i]

d ),

with

■ ΣH̃(θ̂
[i]
) =

∑D
d=1ΣH̃d

(θ̂
[i]

d ) + σ2
wIM ,

■ Σ̂H̃ = 1
N

∑N
n=1 H̃nH̃

H

n with H̃n
.
=

∫ tn+T
tn

y(t)u(t)∗dt,
n = 1, . . . , N .



Maximization (M-) step of Iteration i
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■ In the M-step, the estimate θ̂
[i]

d is calculated as

θ̂
[i]

d = argmax
θd

Q(θd|θ̂
[i−1]

).

■ By applying a coordinate-wise updating procedure, the required
multiple-dimensional maximization can be reduced to multiple
one-dimensional maximization problems.

■ Notice that this coordinate-wise updating still remains within the
SAGE framework with the admissible data given in (16).



Experimental Investigations
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(a) Surroundings of the Tx. (b) Surroundings of the Rx.

(c) Map of the premises.



Estimate of Azimuth-Elevation Power Spectrum
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■ Bartlett spectrum of
the signal received at
delay 160 ns

■ Power spectrum esti-
mate
using the proposed
characterization method

■ Bartlett spectrum of the
reconstructed signal
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