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Deterministic radio propagation 
modeling and ray tracing 

1)   Introduction to deterministic propagation modelling 

2)   Geometrical Theory of Propagation I - The ray concept – Reflection 
and transmission 

3)   Geometrical Theory of Propagation II - Diffraction, multipath 

4)   Ray Tracing I 

5)   Ray Tracing II – Diffuse scattering modelling 

6)   Deterministic channel modelling I 

7)   Deterministic channel modelling II – Examples 

8)   Project  - discussion 
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•  Ray tracing (RT) is not only a prediction tool, is a realistic multipath propagation 
model. Therefore using ray tracing doesn’t only mean getting coverage or 
prediction results. As far as the model is realistic, it also allows simulation, 
study, analysis of  the urban multipath propagation phenomenon. 

•  RT (or ray launching) is also the most accurate prediction model now available. 
In terms of radio coverage prediction, a mean error of a fraction of dB and a 
stdev of the error of 5-7 dB are achievable in practice. 

•  Although RT isn’t an empirical model, some run parameters must be set before 
running RT. The following is a list of typical parameter values for outdoor 
prediction in european cities 

 

  

Using ray tracing (1/2) 

 Control string: 3@***@2d1s 
  which means: 
  Nev=3 
  max. 2 diffractions 
  max. 1 scattering 
 Material parameters: er=5, s=0.01 [S/m] (for all building walls) 
 Coherent mode 
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•  Since diffraction is a very time-consuming interaction, and up to 10 or more 
diffractions are required for ORT paths, then often ORT propagation is treated 
off-line using a multi-diffraction ORT model even if the RT model is 3D 

•  Then multi-diffraction ORT is considered as one single interaction in the RT 
engine and in the view tree, so that it can be combined with other interactions 
even with  Nev is low 

•   Rays experiencing “ORT+scattering” or “ORT+reflected” are very important for 
time and angle dispersion 

 

  

Using ray tracing (2/2) 
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Using ray tracing (2/2) 
•  RT is also a useful didactic 

tool… 
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CPU time vs Nev 

CPU time vs Nev Munich scenario 
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CPU time vs number of buildings 
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CPU time vs number of Rx points 
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Path loss vs Nev 
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Delay Spread vs Nev 
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Azimuth Spread vs Nev 
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Impact of different interactions 

Interaction Relevance CPU time Relevance CPU time 

Reflection High  Medium  Medium Medium 

Diffraction High 
(µcells) 

High Low High 

ORT diffr. High 
(macro-cells) 

Medium ------------ ------------ 

Scattering High 
(multi-dim.) 

High Medium High 

Transmission ------------ ------------ High 
(f<10GHz) 

Low 

Outdoor prediction Indoor prediction 
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What is diffuse scattering? 

Real building Representation 
(macro-structure only) 

smooth walls 
sharp edges 
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Tx Rx 

Real urban environment: diffuse 
scattering effect 

Measured power- 
angle profile at Rx 

Top view 

Simulated power- 
angle profile at Rx 
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Diffuse scattering effect (II) 
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Because of diffused/distributed 
scattering we get a dispersed power-
profile or cluster of rays at the Rx  

Computing all contributions in such a 
c l u s t e r w o u l d i n v o l v e h e a v y 
computation 
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Diffuse scattering definition(s) (1/2) 
The question: 

 What is the definition of diffuse/distributed scattering? 

 

The possible answer(s): 
•  Any interaction with obstacles is scattering   distributed obstacles yield 

distrubuted scattering 

•  The macroscopic result of  many interactions on “small” obstacles, most 
of which are actually reflections, transmissions, diffractions  

Empirical: 

•  All contributions which cannot be “resolved” by the measurement system 

Here: 

•  All contributions except main reflections/diffractions on the building 
macro-structure 

 

D.S.=NOTHING ? 

D.S.=EVERYTHING ? 
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Diffuse scattering definition(s) (2/2)  
 

Therefore : 
 

 Diffuse/distrubuted scattering includes 
everything that cannot be modelled with 
traditional ray models operating on 
building databases  

 

 Ray models need to be extended 
somehow to diffuse scattering 

Rx signal 

Reflections/diffractions 
from the building macro-

structure 

Reflections/diffractions 
from non-represented objects 

Incoherent contributions 
from micro-objects 

D.S. 
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The Effective Roughness model (1/6) 
•  It is based on the assumption that if a given power amount impinges on the 

generic surface element, then a fraction of it is scattered with a given 
scattering pattern (reflection is thus attenuated accordinly) 

•  The scattering pattern must be intended in a statistical way  p.d.f.  
•  Similarly to the Fresnel’s reflection coefficient a scattering coefficient S is 

defined so that S2 is the fraction of scattered power 
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PS

Pi

Scattering: 

 Tx

ri

dΩ

Ei
2

dΩ ri
2

Pp

2η
Γ 2 R2Ei

2dΩ ri
2

2η

PS

DS 

wall 

 = Pi

 = PRReflection: 
  
Γ

2
=

PR

Pi  
Γ ⋅ R( )2

=
PR

Pi

  0 ≤ R < 1



18 

 On Ds, the following power balance holds: 
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 If now the surface ‘becomes’ smooth, assuming the penetrated power does 
not change (questionable…), we have (S=0, R=1): 

22) 1 p
i

P
P= Γ +

 From 1) and 2) we therefore get: 
2

21 (**)SR ≅ −
Γ

DS 

The Effective Roughness approach (2/6) 
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 If we now move away in the far field the following power balance 
for the diffused wave holds 

2 22 2 2

2

3)  i i i s s sS E d r E d r
π

⋅ ⋅ Ω ⋅ = Ω ⋅∫

 If the scattering pattern |Es|2(θs,φs) is 
known, then 3) can be solved w.r.t. the 
scattered field. If the scattering pattern is 
Lambertian                             we get: 
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 Notice that the scattered field has a different, stronger attenuation law vs. 
distance w.r.t. the reflected one:  
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The Effective Roughness approach (3/6) 
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 Several scattering pattern can be assumed. Of course power balance must 
always be satisfied. For each scattering pattern a different solution of eq. 3) can 
be found. 
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Most common scattering 
patterns: 

The Effective Roughness approach (4/6) 
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  In the Lambertian case, for example, the total diffused 
power from a surface of area A can be therefore obtained 
through the following surface integral: 

  If multidimensional prediction is 
needed, then each surface element 
contribution must be computed  very 
high computation time 
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θ θ
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The Effective Roughness approach (5/6) 
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  If the surface is “far” from the terminals, thus distan-
ces do not change much over A, then we have a simpler 
expression:  

The Effective Roughness approach (6/6) 
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Yes, but how much? 
Model parameters: conservative values 
 
 

For example from [*] for a limestone slab, normal incidence, we have: 
 
 

smooth surface                 rough surface (sh~2.5 cm) 

       |Γ|~0.5  (*) |Γ’|=|0.5|R~0.3 

Therefore from (*) and (**) we get:   R=0.6,  S=0.4. 
This means that in this simple case 16% of the impinging power is scattered 
 

[*]  O. Landron, M. J. Feuerstein and T. S. Rappaport, "A comparison of theoretical and empirical reflection coefficients for 
typical exterior wall surfaces in a mobile radio environment," IEEE Trans. Ant. Propagat., vol. 44, no. 3, pp.341-351, March 1996. 

But also the following must hold: 
2

21 (**)SR ≅ −
Γ



24 

Application to a simple case 

Ideal, T-shaped street 
intersection  
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Measurements (1/3) 

It is impossible, given the gear, to isolate diffuse scattering…  

Comparison with ray tracing simulation including the ER model 
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Measurements (2/3) 

Three cases are considered, whose scattering contribution is presumably different 
(increasing) 
 
Frequency: 1296 Mhz 
 
Co-polarized parabolic antennas 

Metal airport hangar    Brick wall    Abandoned Rural building 
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Measurements (3/3) 

Ex: rural building 
 
disabling the scattering 
contribution completely 
wrong ray tracing results 
are obtained  Specular reflection 

peak  

Front-to-back 
peak  
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Best scattering parameter values 

The best value is therefore S=0.35  

 

 

Directive scattering pattern  –  Rural building 
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Best scattering parameter values 

The best value is therefore S=0.05 

(very low scattered power)  

 

 

Similar results are obtained with 
normal incidence 

 

Directive scattering pattern –  Hangar 
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Notes 
•  In the considered cases the diffuse scattering phenomena are not negligible and 

must be accurately modeled to get good predictions. 

•  It has been shown that by adopting a single-lobe scattering pattern and appropriate 
values for the scattering parameter S a good agreement between RT simulations 
and measurements can be achieved 

  
•  The best scattering pattern is directive with αR=3 and the best S values are 0.35, 

0.2 and 0.05 for the rural, brick, and hangar buildings, respectively. 

•  In urban environment, due to cluttering, street signs, lampposts, etc. the actual 
diffuse scattering background is expected to be considerably  greater than here. 
S=0.35 is therefore a lower-bound value. 

•  Further reading: 
 V. Degli-Esposti, F. Fuschini, E. Vitucci, G. Falciasecca, "Modelling of scattering from 
buildings," IEEE Transactions on Antennas and Propagation, January 2007  


