Deterministic radio propagation modeling and ray tracing

- 1) Introduction to deterministic propagation modelling
- 2) Geometrical Theory of Propagation I The ray concept Reflection and transmission
- 3) Geometrical Theory of Propagation II Diffraction, multipath
- 4) Ray Tracing I
- 5) Ray Tracing II Diffuse scattering modelling
- 6) Deterministic channel modelling I
- 7) Deterministic channel modelling II Examples
- 8) Project discussion

Using ray tracing (1/2)

- Ray tracing (RT) is not only a prediction tool, is a realistic multipath propagation model. Therefore using ray tracing doesn't only mean getting coverage or prediction results. As far as the model is realistic, it also allows *simulation*, *study*, *analysis* of the urban multipath propagation phenomenon.
- RT (or ray launching) is also the most accurate prediction model now available. In terms of radio coverage prediction, a mean error of a *fraction of dB* and a stdev of the error of *5-7 dB* are achievable in practice.
- Although RT isn't an empirical model, some *run parameters* must be set before running RT. The following is a list of typical parameter values for outdoor prediction in european cities

```
Control string: 3@***@2d1s 
      which means: 
      N_{\rm ev}=3max. 2 diffractions 
      max. 1 scattering 
Material parameters: e_r = 5, s = 0.01 [S/m] (for all building walls)
Coherent mode
```


Using ray tracing (2/2)

- Since diffraction is a very time-consuming interaction, and up to 10 or more diffractions are required for ORT paths, then often ORT propagation is treated off-line using a multi-diffraction ORT model even if the RT model is 3D
- Then multi-diffraction ORT is considered as one single interaction in the RT engine and in the view tree, so that it can be combined with other interactions even with N_{ev} is low
- Rays experiencing "ORT+scattering" or "ORT+reflected" are very important for time and angle dispersion

Using ray tracing (2/2)

• RT is also a useful didactic tool…

CPU time vs N_{ev}

Munich scenario CPU time vs Nev

CPU time vs number of buildings

CPU time vs number of Rx points

Path loss vs N_{ev}

Delay Spread vs N_{ev}

Azimuth Spread vs N_{ev}

Impact of different interactions

What is diffuse scattering?

Real building Representation (macro-structure only)

Real urban environment: diffuse scattering effect

Top view

Measured powerangle profile at Rx

Simulated powerangle profile at Rx

Diffuse scattering effect (II)

Because of diffused/distributed scattering we get a dispersed **powerprofile** or **cluster** of rays at the Rx

Computing all contributions in such a cluster would involve heavy computation

Diffuse scattering definition(s) (1/2)

The question:

What is the definition of diffuse/distributed scattering?

The possible answer(s):

- Any interaction with obstacles is scattering **I** distributed obstacles yield distrubuted scattering D.S.=EVERYTHING ?
- The macroscopic result of many interactions on "small" obstacles, most of which are actually reflections, transmissions, diffraction D.S.=NOTHING ?

Empirical:

- All contributions which cannot be "resolved" by the measurement system Here:
- All contributions except main reflections/diffractions on the building *macro-structure*

Diffuse scattering definition(s) (2/2)

Therefore :

Diffuse/distrubuted scattering includes everything that cannot be modelled with traditional ray models operating on building databases

Ray models need to be extended somehow to diffuse scattering

The Effective Roughness model (1/6)

- It is based on the assumption that if a given power amount impinges on the generic surface element, then a fraction of it is scattered with a given *scattering pattern* (reflection is thus attenuated accordinly)
- The scattering pattern must be intended in a *statistical way* $\rightarrow p.d.f.$
- Similarly to the Fresnel's reflection coefficient a *scattering coefficient S* is defined so that S^2 is the fraction of scattered power

The Effective Roughness approach (2/6)

On Ds, the following power balance holds:

$$
\begin{aligned} {E_i}^2\Delta\Omega {r_i}^2&=&\ {|\Gamma|}^2{R^2}{E_i}^2\Delta\Omega {r_i}^2\\&+&S^2{E_i}^2\Delta\Omega {r_i}^2 \end{aligned}
$$

 $+ 2\eta P_p$

Thus:

1)
$$
1 = \Gamma^2 R^2 + S^2 + \frac{P_p}{P_i}
$$

If now the surface 'becomes' smooth, assuming the penetrated power does not change (questionable...), we have $(S=0, R=1)$:

$$
2) \ \ 1 = \Gamma^2 + \frac{P_p}{P_i}
$$

From 1) and 2) we therefore get:

$$
R \cong \sqrt{1 - \frac{S^2}{\Gamma^2}} \, (**)
$$

The Effective Roughness approach (3/6)

If we now move away **in the far field** the following power balance for the diffused wave holds

$$
3) S2 \cdot |\overline{E}_i|^2 \cdot d\Omega_i \cdot r_i^2 = \int_{2\pi} |\overline{E}_s|^2 d\Omega_s \cdot r_s^2
$$

If the scattering pattern $|E_s|^2(\theta_s, \phi_s)$ is known, then 3) can be solved w.r.t. the scattered field. If the scattering pattern is *Lambertian* $(\overline{E}_s)^2 = E_{s0}^2 \cdot \cos \theta_s$ we get:

$$
\left|\overline{E}_s\right|^2 = K_0^2 S^2 \frac{dS \cos\theta_i \cos\theta_s}{\pi} \frac{1}{r_i^2 r_s^2}; \quad K_0 = \sqrt{60 G_t P_t},
$$

Notice that the scattered field has a different, stronger attenuation law vs. distance w.r.t. the reflected one:

$$
A_s = \frac{1}{r_i r_s}; \quad (scattered\ field) \qquad A_r = \frac{1}{r_i + r_s} \quad (reflected\ field)
$$

The Effective Roughness approach (4/6)

Several scattering pattern can be assumed. Of course power balance must always be satisfied. For each scattering pattern a different solution of eq. 3) can be found.

Most common scattering patterns:

 $\left| \overline{E}_s \right|^2 = E_{\overline{S0}}^2 \cdot \cos \theta_s$ Lambertian

 $\alpha_R = 1, 2, ..., N$ 2 $\int_{0}^{2} E_{S0}^{2} \cdot \left(\frac{1 + \cos \psi_{R}}{2} \right)^{\alpha_{R}} \alpha_{R} =$ \overline{a} $\left(\frac{1+\cos \psi_R}{2}\right)^n$ ⎝ $= E_{S0}^2 \cdot \left(\frac{1 + \cos \psi_R}{2} \right)^{\alpha_R} \alpha_R$ S ^{\vert} $=$ L_S $\overline{E}_S|^2 = E_{S0}^2 \cdot \left(\frac{1+\cos \psi_R}{\overline{\phi}}\right)^{\alpha_R} \alpha$ Directive

The Effective Roughness approach (5/6)

 In the Lambertian case, for example, the total diffused power from a surface of area A can be therefore obtained through the following surface integral:

$$
\left| \overline{E}_s \right|_{TOT}^2 = \frac{K_0^2 S^2}{\pi} \iint_A \frac{\cos \theta_i \cos \theta_s}{r_i^2 r_s^2} dx dy
$$

• If multidimensional prediction is needed, then each surface element contribution must be computed \rightarrow very high computation time

The Effective Roughness approach (6/6)

 If the surface is "far" from the terminals, thus distances do not change much over A, then we have a simpler expression:

$$
\left| \overline{E}_s \right|_{TOT}^2 = A K_0^2 S^2 \frac{\cos \theta_i \cos \theta_s}{\pi} \frac{1}{r_i^2 r_S^2}
$$

$$
\begin{matrix}\n\mathbf{T} \mathbf{x} \\
\vdots \\
\mathbf{X} \mathbf{y} \mathbf{z}\n\end{matrix}
$$

Yes, but how much?

Model parameters: conservative values

For example from [*] for a limestone slab, normal incidence, we have:

But also the following must hold:

$$
R \cong \sqrt{1 - \frac{S^2}{\Gamma^2}} \, \, (**)
$$

Therefore from $(*)$ and $(**)$ we get: **R=0.6, S=0.4**. This means that in this simple case **16%** of the impinging power is scattered

[*] O. Landron, M. J. Feuerstein and T. S. Rappaport, "A comparison of theoretical and empirical reflection coefficients for typical exterior wall surfaces in a mobile radio environment," IEEE Trans. Ant. Propagat., vol. 44, no. 3, pp.341-351, March 1996.

Application to a simple case

Ideal, T-shaped street intersection

Ps/P_{coherent}*100 plotted vs D_t and D_r

Scattered (red) and coherent (blue) impulse response for $D_t = 30$ m and $D_r = 190$ m.

Measurements (1/3)

It is impossible, given the gear, to isolate diffuse scattering…

Comparison with ray tracing simulation including the ER model

Measurements (2/3)

Metal airport hangar Brick wall Abandoned Rural building

Three cases are considered, whose scattering contribution is presumably different (increasing)

Frequency: 1296 Mhz

Co-polarized parabolic antennas

Measurements (3/3)

Ex: rural building

disabling the scattering contribution completely wrong ray tracing results wrong ray tracing results
are obtained
and the specular reflection
 $\begin{bmatrix} \frac{2}{9} & 10 \\ \frac{5}{8} & 40 \\ 2 & 45 \end{bmatrix}$ pecular reflection

Best scattering parameter values

Directive scattering pattern – Rural building

The best value is therefore S=0.35

Best scattering parameter values

Directive scattering pattern – Hangar

The best value is therefore S=0.05

(very low scattered power)

Similar results are obtained with normal incidence

Notes

- In the considered cases the diffuse scattering phenomena are not negligible and must be accurately modeled to get good predictions.
- It has been shown that by adopting a single-lobe scattering pattern and appropriate values for the scattering parameter S a good agreement between RT simulations and measurements can be achieved
- The best scattering pattern is directive with $\alpha_R=3$ and the best S values are 0.35, 0.2 and 0.05 for the rural, brick, and hangar buildings, respectively.
- In urban environment, due to cluttering, street signs, lampposts, etc. the actual diffuse scattering background is expected to be considerably greater than here. S=0.35 is therefore a lower-bound value.
- Further reading:

V. Degli-Esposti, F. Fuschini, E. Vitucci, G. Falciasecca, "Modelling of scattering from buildings," IEEE Transactions on Antennas and Propagation, January 2007

