
1. Signal Detection

1.1. Hypothesis testing

• Method:
In hypothesis testing, a decision is made based on the observation of a random

variable as to which of several hypotheses to accept.

In binary hypothesis testing the choice is made among two hypotheses.

Example 1: Detection of a BPAM signal:

: “0” is transmitted Null hypothesis

: “1” is transmitted Alternate hypothesis

Example 2: Target detection in radar technique:

: The target is not present

: The target is present

• Mathematical framework for binary hypothesis testing:

   - Two hypotheses: and

   - One observation  of a random variable  whose probability density
function (pdf) under each hypothesis is known.
We denote these pdfs as:
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   - A decision rule , i.e. a mapping

: ,

where  denotes the range of .

In the above figure, when is observed, the decision is

made.

The decision rule  determines two decision regions in :
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Example: Binary pulse amplitude modulation (BPAM)

   - Signal model:

where

 is a Gaussian noise, i.e.:

-  is a Gaussian random variable,

- with expectation ,

- and variance .

   - Probability density function (pdf) of :

   - Pdf of  under  and  and decision regions:
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• Decision table:

   -  : Correct decision

   -  : Incorrect decision:

The pair  in the above table means  and

.

• Probabilities of correct decision and of making an error:

   - Probability of correct decision:

   - Probability of incorrect decision:

Obviously,

.

• Types of error and their probability:

   - False alarm (Type I error):  when  is true.

False alarm probability:

.

   - Miss (Type II error):  when  is true.

Probability of a miss:

.
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   - Probability of incorrect decision:

Example: BPAM (cont’d):

1.2. Decision rules

1.2.1. Maximum “a posteriori” (MAP) decision rule

We seek a decision rule which minimizes the probability of error .

• MAP decision rule:
Such a rule exists. It is of the form:

where , , is the “a posteriori” probability of when

is observed.

• Bayes rule:
The “a posteriori” probability  can be obtained by invoking Bayes’

rule:

.
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• MAP decision rule (cont’d):
Using the last identity, the MAP decision rule can be recast as:

or equivalently

The function  is called the likelihood ratio.

It is more common to use the log-likelihood ratio

instead:

• Derivation of the MAP decision rule:

f y H
1

( )P H
1

[ ] f y H
0

( )P H
0

[ ]<>
H 1

H 0

L y( )
f y H

1
( )

f y H
0

( )
----------------------≡

P H
0

[ ]
P H

1
[ ]

----------------<>
H 1

H 0

L y( )

l y( ) L y( )( )ln≡

l y( )
f y H

1
( )

f y H
0

( )
----------------------
 
 
 

ln=
P H

0
[ ]

P H
1

[ ]
----------------
 
 
 

ln<>
H 1

H 0
1-6



Example: BPAM (cont’d)

   - Likelihood ratio:

   - Loglikelihood ratio:

   - MAP decision rule:

• Maximum likelihood (ML) decision rule:
Selecting a uniform “a priori” pdf for the hypotheses, i.e.

,

the MAP decision rule reduces to the ML decision rule:

The ML decision rule selects the hypothesis which maximizes the likelihood

function .
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1.2.2. Bayes decision rule

• Cost function:
In many engineering branches costs have to be taken into account depending

on the decision and the true hypothesis.

Usually, the cost of making a wrong decision is higher than that of making a

correct decision:

.

• Average cost:

• Bayes decision rule:

A Bayes decision rule is a decision rule which minimizes the average cost .

It is of the form:

Proof:

The average cost  can be written as:

Note that the Bayes rule reduces to the MAP rule when the cost is selected to

be:
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1.2.3. Minimax and Neyman-Pearson decision rule

Bayes decision rules necessitate the specification of an “a priori” pdf:

.

In some situations such a pdf is unknown and difficult to assess or even the defi-

nition of such a pdf does not make sense. In this case we have to resort to alterna-

tive decision rules.

• Minimax decision rule:
The minimax decision rule is employed when the “a priori” pdf is unknown.

   - Maximum average cost of a decision rule:

Let us consider the behavior of  for a fixed decision rule  as

 varies:

 is the maximum average cost and

 is the worst case “a priori” pdf

when employing decision rule .

   - Minimax decision rule:

A minimax decision rule, say  minimizes :
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• Neyman-Pearson decision rule:
The Neyman-Pearson (NP) decision rule is used when neither an “a priori” pdf

nor cost assignments are given.

A NP decision rule minimizes the probability of false alarm

 while keeping the probability of a miss

 below a certain specified level, say .

Example: BPAM (cont’d)

Thus, a NP decision rule  satisfies the inequality

1.2.4. General form of a binary decision rule:

Both minimax and NP decision rules can be shown to be of the form:

or equivalently

for some decision threshold .

Notice that the Bayes decision rule, and therefore the MAP decision rule as

well, are also of the same form with

.
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• Receiver operating characteristics (ROC):
In radar technique the performance of detectors are described in terms of a

graph representing the probability of correct detection

versus the false alarm probability :

Example: BPAM (cont’d)

ROC for :
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1.3. Binary detection of discrete-time signals

1.3.1. Time-limited discrete-time signals

• Signal model:

where

   -

   -  is a white Gaussian noise:

-  is a Gaussian process,

- ,

- .

Example: Detection of BPAM signals

• Vector representation of finite sequences:

   - Deterministic signals:

   - Random sequences:
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• Pdf of  under  and :

   - Vector representation of the received signal:

where

   - Pfd of :

where

is the norm of .

   - Pdf of  under  and :
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• Likelihood and loglikelihood ratios:

   - Likelihood ratio:

   - Loglikelihood ratio:

• Decision rules:

or equivalently

where

is the energy of the signal , .
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Comment:

Notice that  is the scalar product of  and , i.e.

Special case: MAP decision rule:

• Block diagram of a binary detector for time-limited discrete-time signals:

1.3.2. Discrete-time signals with finite energy

• Signal model:

where

   -

where ,  has finite energy, i.e.

   -  is a white Gaussian noise sequence with variance .
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• Decision rules:
Decision rules can be obtained in this case as well which prove to be of the

form:

Hence, these decision rules are essentially the same as those derived for time-

limited sequences.

1.4. Binary detection of continuous-time signals

• Signal model:

with

   - .

The signals  and  have finite energy, i.e.

   -  is a white Gaussian noise:

-  is a Gaussian process,

- ,

- .
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The power spectral density function of  reads:

• Key issue:
Subsequently we consider two situations which prove to be equivalent to that

previously considered in Sect. 3.3.2.

1.4.1. Bandwidth-limited continuous-time signals

• Bandwidth-limited signals:
The signals  and  are bandwidth-limited with bandwidth :

• Sampling theorem for bandwidth-limited signals:
The signal , , can be represented as

,
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   - :

According to the above sum,  is entirely determined by its samples

, :

• Parseval relationship for bandwidth-limited finite-energy signals:
Let  and  denote two finite-energy signals with bandwidth .
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.
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In particular,

.

• Sampling theorem for bandwidth-limited processes:
Without loss of generality we can assume that is bandwidth-limited with

bandwidth .

Then,

,

where  is the sample of  at .

Moreover, it can be shown that the sequence , ,

is a white Gaussian sequence with variance

.

• Decision rules:
The identification

in combination with the Parseval relation allows to reduce the situation of con-

tinuous-time bandlimited signals with finite energy to the case of infinite

sequences with finite energy considered in Sect. 3.3.2.

Invoking the Parseval relation again and the result obtained in Sect. 3.3.2, the

decision rules are found to be of the form:
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• Block diagram of a binary detector for bandwidth-limited continuous-time
signals:

1.4.2. Time-limited continuous-time signals

A similar rational as used above can be applied to time-limited (but possibly

bandwidth unlimited) finite-energy signals.

• Time-limited signals:
Let  be an interval outside which  and  vanish, i.e.

.

• Decision rules:
The decision rules are found to be of the form:
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• Block diagram of a binary detector for time-limited continuous-time signals:

1.5. M-ary detection

• Multiple hypothesis testing:
So far, we have considered the problem of deciding between one among two

hypotheses. In many engineering problems a decision must be taken between

more that two possibilities, say .

Example: 4-PAM
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• Decision rule and decision regions:

   - Decision rule:

   - Decision regions:

• Probabilities of correct decision and of making an error:

   - Probability of correct decision:

   - Probability of incorrect decision:
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• MAP for M-ary detection:
In order to minimize  a decision rule must select an hypothesis whose “a

posteriori” probability is maximum:

or equivalently, by invoking Bayes’ rule:

Using the log-likelihood function:

Example: M-ary MAP decision rule for time-limited discrete-time signals

Compact formulation of the MAP decision rule:

Special case: ML decision rule:

Selecting the uniform “a priori” pdf

yields the ML decision rule:
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Comment: The M-ary MAP decision rules for all other situations previously

considered are obtained by appropriately replacing the scalar prod-

uct in the above decision rules.

• Block diagram of a M-ary MAP detector:
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