
4. Model-Free and Model-Based Estimation
of Random Processes

4.1. Model-free estimation of random processes

In this section  is a WSS process with

   - mean value:

   - autocorrelation function:

The autocovariance function of  is

• Observed sequence:
We assume that  can be observed.

Example 1: Wölfer sunspot numbers
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Defining the window function

the observed sequence reads:

4.1.1. Estimation of the mean-value

• Arithmetic mean:

• Mean and variance of :

   - Mean:  is an unbiased estimator of :

   - Variance:

Special case: When  is an uncorrelated process:

Proof: See Exercise 5.1.
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4.1.2. Estimation of the autocorrelation function:

• Biased sample autocorrelation function:
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To show that the sample autocorrelation function is biased we recast

it as:

Taking the expectation on both side yields

The function

is called the Bartlett window.

With this definition, the bias of  can be recast as
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• Biased sample autocovariance:

Example 1: Wölfer sunspot numbers

• Unbiased sample autocorrelation function:
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where  is the centered rectangular function:

• Properties of the sample autocorrelation functions:

   -

   - With  observations, we can only estimate  for .

- In general, it is difficult to calculate the variance of the sample autocorrela-

tion functions since the computation involves fourth moments of the form

.

In the Gaussian case these moments can be evaluated and the variance of

the sample autocorrelation functions can be calculated (See Exercise 9.8 of

[Shanmugan]).
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   - A general conclusion is that the variance of  and

increases with  since the number of observations considered in the com-

putation of these values is .

4.1.3. Estimation of the power spectral density:

• Continuous-frequency periodogram:
Let us start from the slightly differently reformulated Fourier transform:

The periodogram of  is defined to be

Proof:
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• Discrete-frequency periodogram:

• Discrete Fourier transform:
The discrete Fourier transform and the inverse DFT are defined according to

Relation between the discrete Fourier transform and the (continuous-fre-

quency) Fourier transform:

In particular, the discrete-frequency periodogram can be computed as
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Example 1: Wölfer sunspot numbers

• Bias of the periodogram:
Because the Fourier transform is a linear operation, we have

It follows from (4.2) that:

The Fourier transform

of the Bartlett window is called the Féjer kernel.

Proof: It can be easily shown that the Fourier spectrum of  is

where .
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E Ŝ XX f( )[ ] F E R̂XX k( )[ ]{ }=
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In summary, the bias of  and  are given by

• Spectral leakage:
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E Ŝ XX f( )[ ] E Ŝ XX f 0( )[ ] WF f f 0–( )SXX f( ) fd∫=
4-10



As  increases to infinity, , so that

,

i.e.  and  are asymptotically unbiased.

• Variance of the periodogram:
The following asymptotic results are valid for a large classes of stochastic

processes, and in particular for ARMA processes.

Hence,

   - Any two “different” samples of the periodogram are asymptotically uncor-

related.

Remember that  and consequently  are even functions.

   - As  increases the variance of the periodogram does not vanish but stabi-

lizes to a value. This value coincides with the asymptotic mean of the peri-

odogram when .
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These two properties are responsible of the erratic nature of the periodogram

(see the periodogram of the sunspot numbers).

Increasing the number of samples increases the spectral resolution only.

• Smoothing through windowing:

Windowing aims at reducing the variability of the estimated spectrum.

A lag window  is a sequence satisfying the following properties:

   -  is even, i.e .

   -  for

   -
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The Blackman-Tukey estimator of the spectrum is of the form

where  is a given lag window with Fourier transform .

Making use of the property of the Fourier transform, we obtain

Usually, the spectral window is selected to have a narrow main lobe

and low sidelobes. The above convolution corresponds to a local weighted

averaging of .

This averaging operation reduces the variability of but also leads to a

reduction of the spectral resolution.

Example 1: Wölfer sunspot numbers
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Some well-known lag windows:
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4.2. Parametric (model-based) estimation of random
processes

4.2.1. Box-Jenkins method:

• Key idea of the method:

- The observed sequence is transformed in such a way

that the transformed sequence can be reasonably

assumed to be the realization of a WSS process .

   - An ARMA(p,q) process is fitted to .

- The estimated autocorrelation function and power spectrum are identified

to the autocorrelation function and the power spectrum of the estimated

ARMA(p,q) process.

Example 2: International airline passengers.
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Example 3: Monthly accidental deaths in the U.S.A.

• The different steps of the Box-Jenkins method:
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4.2.2. Preprocessing:

• Objective:
The observed sequence  is transformed in such a way

that the transformed sequence

can be reasonably assumed to be the realization of a WSS process .

• Non-linear transformation to create stationarity:
Let  be a sequence which exhibits some non-stationary features. We

can apply a non-linear transformation  to  to obtain a new sequence

 where these features are eliminated or at least

reduced.

Example 2: International airline passengers.
The variability of the serie increases linearly as a function of the level of the

serie. This variability is stabilized by applying the following transformation:
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To understand how the transformation  stabilizes the varia-

bility, let us assume that the standard deviation of  increases propor-

tionally to its expectation:

Equivalently,

.

We can rewrite  as

Considering the first order Taylor approximation  around 1,

 can be approximated according to

Approximation of the expectation and standard deviation of :

• Differentiating to remove periodicity (seasonality):

Theoretical example 1:
Let consider the sequence  where

where  is a WSS process.
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For example, might represent a monthly average (see Examples 2 to

3). Let

be the sequence obtained by transforming  according to

Then

Hence, the sequence  is stationary.

Example 3: Monthly accidental deaths in the U.S.A.

• Differentiating to remove trends:

Theoretical example 2:
Let consider the sequence  where

where  is a WSS process.
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Let us consider the transformation

.

Then,

.

Hence,  is a WSS process, which can be modelled as an ARMA proc-

ess.

• ARIMA(p,d,q) processes:
Notice that the above process  is the “discrete derivative” of .

Let us introduce the following notation for discrete derivative:

 if  for all .

Notice that according to the previously introduced notation

.

A process  is an ARIMA(p,d,q) process if its dth discrete derivative

 is an ARMA(p,q) process.

An ARIMA process reduces after differentiating finitely many times to an

ARMA process. The letter I in ARIMA stands for “integrated”.

Notice that if then can be obtained by carrying

out a discrete integration of .
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Example 3: Monthly accidental deaths in the U.S.A.

Example 2: International airline passengers.
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4.2.3. Fitting ARMA(p,q) processes:

• Definition (review):
A random sequence  is an autoregressive moving average process

th order (ARMA( )) if it is WSS and for any :

where  is a white Gaussian process with variance .

• Filter implementation:

• Parameter estimation:

   - Model order , :

and are estimated by applying the Akaike information criterion (AIC)

or the minimum description length (MDL) criterion.
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   - Coefficients  and :

1. The parameters of an AR process can be estimated by solving the Yule-

Walker equations:

where

Example 1: Wölfer sunspot numbers

The estimated AR model for the mean-corrected data is found to be

a) ,

b)

2. In the general case of an ARMA process,  and  can be

estimated by using the maximum likelihood method.

Example 1: Wölfer sunspot numbers

The estimated ARMA model for the mean-corrected data is found to be

a) , ,

b)
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• Estimate of the power spectrum:

   - Estimate of the transfer function:

   - Estimate of the power spectrum:

Example 1: Wölfer sunspot numbers:

- Estimate with the AR(3) model:
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- Estimate with the ARMA(9,1) model:

• Estimate of the autocorrelation function:

f

Ŝ
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