
2. Linear Minimum Mean Squared Error
Estimation

2.1. Linear minimum mean squared error estimators

• Situation considered:

   - A random sequence  whose realizations can be observed.

   - A random variable  which has to be estimated.

   - We seek an estimate of  with a linear estimator of the form:

.

   - A measure of the goodness of  is the mean squared error (MSE):

.

• Covariance and variance of random variables:
Let  and  denote two random variables with expectation

 and .

   - The covariance of  and  is defined to be:

   - The variance of  is defined to be:
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Let  and  denote two ran-

dom vectors.

The covariance matrix of  and  is defined as

A direct way to obtain :

where

Examples:  and .

In the sequel we shall frequently make use of the following covariance matrix

and vector:

(i)

(ii)

• Linear minimum mean squared error estimator (LMMSEE)
A LMMSEE of  is a linear estimator, i.e. an estimator of the form

,

which minimizes the MSE .
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A linear estimator is entirely determined by the -dimensional vector

.

• Orthogonality principle:

Proof:

Because the coefficient vector of the LMMSEE minimizes , its

components must satisfy the set of equations:

.

Notice that the two expressions in (2.1) can be rewritten as:

Important consequences of the orthogonality principle:
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Orthogonality principle:

A necessary condition for to be the coefficient vec-

tor of the LMMSEE is that its entries fulfils the  identities:
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Geometrical interpretation:
Let  and  denote two random variables with finite second moment, i.e.

 and .

Then, the expectation  can be viewed as the scalar or inner product

of  and .

Within this interpretation:

-  and  are uncorrelated, i.e.  if and only if, they are

orthogonal,

-  is the norm (length) of .

Interpretation of both equations in (2.3):

- (2.3a): the estimation error  and the estimate  are orthogonal.

- (2.3b): results from Pythagoras’ Theorem.

• Computation of the coefficient vector of the LMMSEE:
The coefficients of the LMMSEE satisfy the relationships:

where  and .

Proof:
Both identities follow by appropriately reformulating relations (2.1a) and

(2.1b) and using a matrix notation for the latter one.
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Thus, provided exists the coefficients of the LMMSEE are given by:

• Example: Linear prediction of a WSS process
Let  denote a WSS process with

- zero mean, i.e ,

- autocorrelation function

We seek the LMMSEE for the present value of  based on the  past

observations  of the process. Hence,

-

- , , i.e.

Because  and , it follows from  that

Computation of  and :

-

-

ΣXX( ) 1–

h
0

µY h
-( )

T
µX– µY ΣXY

T ΣXX( ) 1– µX–= =

h
- ΣXX( ) 1– ΣXY= 2.4a( )

2.4b( )

Y n( )
E Y n( )[ ] 0=

E Y n( )Y n k+( )[ ] RYY k( )=

Y n( ) M

Y n 1–( ) … Y n M–( ), ,
Y Y n( )=

X m( ) Y n m–( )= m 1 … M, ,=

X Y n 1–( ) … Y n M–( ), ,[ ] T
=

µY 0= µX 0= 2.4b( )

h
0

0=

ΣXY ΣXX

ΣXY E Y n 1–( )Y n( )[ ] … E Y n M–( )Y n( )[ ], ,[ ] T
=

RYY 1( ) … RYY M( ), ,[ ] T
=

RYY 0( ) RYY 1( ) RYY 2( ) … RYY M 1–( )

RYY 1( ) RYY 0( ) RYY 1( ) … RYY M 2–( )

RYY 2( ) RYY 1( ) RYY 0( ) … RYY M 3–( )

… … … … …
RYY M 1–( ) RYY M 2–( ) RYY M 3–( ) … RYY 0( )

=

E Y n 1–( )2[ ] E Y n 1–( )Y n 2–( )[ ] … E Y n 1–( )Y n M–( )[ ]

E Y n 2–( )Y n 1–( )[ ] E Y n 2–( )2[ ] … E Y n 2–( )Y n M–( )[ ]
… … … …

E Y n M–( )Y n 1–( )[ ] E Y n M–( )Y n 2–( )[ ] … E Y n M–( )2[ ]

=

ΣXX =
2-5



• Residual error using a LMMSEE:
The MSE resulting when using a LMMSEE is

Proof:

2.2. Minimum mean squared error estimators

• Conditional expectation:
Let  and  denote two random variables.

The conditional expectation of  given  is observed is defined to be

.

Notice that  is a random variable. In the sequel we shall make use of

the following important property of conditional expectations:

Proof:
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[ ] E Y Ŷ–( )Y[ ]=

E Y
2[ ] E Ŷ Y[ ]–=
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• Minimum mean squared error estimator (MMSEE):
The MMSEE of based on the observation of is of the form:

Hence if  is observed, then

Proof:

Let  denote an arbitrary estimator. Then,

Thus,

with equality if, and only if, . We still have to prove that

.
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Example: Multivariate Gaussian variables:

 with

   -

   -

From Equation (6.22) in [Shanmugan] it follows that

Bivariate case: ,

   - ,

   - , where  is the correlation coefficient of  and

.

In this case,

We can observe that is linear, i.e. is the LMMSEE in the bivariate

case. This is also true in the general multivariate Gaussian case. In fact,
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Ŷ Y=

)

Y X 1( ) … X M( ), , ,[ ]T
2-8



2.3. Time-discrete Wiener filters

• Problem:
Estimation of a WSS random sequence  based on the observation of

another sequence . Without loss of generality we assume that

.

The goodness of the estimator  is described by the MSE

.

We distinguish between two cases:

   - Prediction:

 depends on one or several past observations of  only, i.e.

 with

   - Filtering:

 depends on the present observation and/or one or many future obser-

vation(s) of , i.e.

 where at least one

If all , the filter is causal otherwise it is noncausal.

Typical application: WSS signal embedded in additive white noise

.

where,

   -  is a white noise sequence,

   -  is a WSS process

   -  and  are uncorrelated.

However, the theoretical treatment is more general as shown below.
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2.3.1. Noncausal Wiener filters

• Linear Minimum Mean Squared Error Filter
We seek a linear filter

which minimizes the MSE .

Such a filter exists. It is called a Wiener filter in honour of his inventor.

• Orthogonality principle (time domain):
The coefficients of a Wiener filter satisfy the conditions:

It follows from these identities (see also (2.3)) that

With the definitions

 ,
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E Y n( ) Ŷ n( )–( )
2

[ ] E Y n( )2[ ] E Ŷ n( )
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• Orthogonality principle (frequency domain):

where

• Transfer function of the Wiener filter:

• MSE of the Wiener filter (time-domain formulation):

Proof:

• MSE of the Wiener filter (frequency-domain formulation):
We can rewrite the above identity as:
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 is the value  of the sequence

Hence,

2.3.2. Causal Wiener filters

A.  is a white noise.

We first assume that  is a white noise with unit variance, i.e.

.

• Derivation of the causal Wiener filter from the noncausal Wiener filter:
Let us consider the noncausal Wiener filter

whose transfer function is given by

.

Then, the causal Wiener filter  results by cancelling the noncausal part

of the non-causal Wiener filter:

E Y n( ) Ŷ n( )–( )
2

[ ] p 0( )

p k( ) RYY k( ) h m( )RYX k m–( )
m ∞–=

∞

∑–=

RYY k( ) h k( )*RYX k( )–=

P f( ) SYY f( ) H f( )SYX f( )– SYY f( )
S XY f( ) 2

S XX f( )
-------------------------–= =

E Y n( ) Ŷ n( )–( )
2

[ ] p 0( ) P f( )df

1 2⁄–

1 2⁄

∫= =

E Y n( ) Ŷ n( )–( )
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Sketch of the proof:

 can be written as

Because is a white noise, the causal part and the noncausal

part of are orthogonal. It follows from this property

that  and  are orthogonal, i.e. that  minimizes the MSE

within the class of linear causal estimators.

B.  is an arbitrary WSS process whose spectrum satisfies the Paley-
Wiener condition.

Usually, the above truncation procedure to obtain  does not apply

because  and  are correlated and therefore not orthogonal in the general

case.

• Causal whitening filter:
However, we can show (see the Spectral Decomposition Theorem below) that

provided satisfies the Paley-Wiener condition (see below) then

can be converted into an equivalent white noise sequence  with unit

variance by filtering it with an appropriate causal filter ,
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Y n( )
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This operation is called whitening and the filter  is called a whitening
filter.

equivalent  there exists another causal filter  so that

:

Notice that if

then

• Causal Wiener filter
Making use of the result in Part A, the block diagram of the causal Wiener fil-

ter is

 is obtained from  according to
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Proof:

Hence, the block diagram of the causal Wiener filter is:

• Spectral Decomposition Theorem:
Let  satisfies the so-called Paley-Wiener condition:

Then  can be written as

with  and  satisfying

.

Moreover, the sequences
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• Whitening filter (cont’d):
The sought whitening filter used to obtained  is

and

.

It can be easily verified that both sequences satisfy the identities in (2.6).

2.3.3. Finite Wiener filters

• Finite linear filter:

• Wiener-Hopf equation:
By applying the orthogonality principle we obtain the Wiener-Hopf system of

equations:
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	- is a WSS process
	- and are uncorrelated.

	However, the theoretical treatment is more general as shown below.
	2.3.1. Noncausal Wiener filters
	• Linear Minimum Mean Squared Error Filter
	We seek a linear filter
	which minimizes the MSE .
	Such a filter exists. It is called a Wiener filter in honour of his inventor.
	• Orthogonality principle (time domain):
	The coefficients of a Wiener filter satisfy the conditions:
	It follows from these identities (see also (2.3)) that
	With the definitions
	,
	we can recast the orthogonality conditions as follows:
	• Orthogonality principle (frequency domain):
	where
	• Transfer function of the Wiener filter:
	• MSE of the Wiener filter (time-domain formulation):
	Proof:
	• MSE of the Wiener filter (frequency-domain formulation):
	We can rewrite the above identity as:
	is the value of the sequence
	Hence,

	2.3.2. Causal Wiener filters
	A. is a white noise.
	We first assume that is a white noise with unit variance, i.e. .
	• Derivation of the causal Wiener filter from the noncausal Wiener filter:
	Let us consider the noncausal Wiener filter
	whose transfer function is given by
	.
	Then, the causal Wiener filter results by cancelling the noncausal part of the non-causal Wiener ...
	Sketch of the proof:
	can be written as
	Because is a white noise, the causal part and the noncausal part of are orthogonal. It follows fr...
	B. is an arbitrary WSS process whose spectrum satisfies the Paley- Wiener condition.
	Usually, the above truncation procedure to obtain does not apply because and are correlated and t...
	• Causal whitening filter:
	However, we can show (see the Spectral Decomposition Theorem below) that provided satisfies the P...
	This operation is called whitening and the filter is called a whitening filter.
	equivalent there exists another causal filter so that
	:
	Notice that if
	then
	We shall see that a whitening filter exists such that
	• Causal Wiener filter
	Making use of the result in Part A, the block diagram of the causal Wiener filter is
	is obtained from according to
	Proof:
	Hence, the block diagram of the causal Wiener filter is:
	• Spectral Decomposition Theorem:
	Let satisfies the so-called Paley-Wiener condition:
	Then can be written as
	with and satisfying
	.
	Moreover, the sequences
	satisfy
	• Whitening filter (cont’d):
	The sought whitening filter used to obtained is
	and
	.
	It can be easily verified that both sequences satisfy the identities in (2.6).


	2.3.3. Finite Wiener filters
	• Finite linear filter:
	• Wiener-Hopf equation:
	By applying the orthogonality principle we obtain the Wiener-Hopf system of equations:
	where
	and
	Coefficient vector of the finite Wiener filter:
	provided is invertible.




