2. Linear Minimum Mean Squared Error

Estimation

2.1. Linear minimum mean squared error estimators

e Situation considered:

- A random sequence X (1), ..., X (M) whose realizations can be observed.

- A random variable Y which has to be estimated.

- We seek an estimate of Y with a linear estimator of the form:

M
Y = hy+ Z h,X(m) |

m=1

- A measure of the goodness of Y is the mean squared error (MSE):

E[(7-1)]

* Covariance and variance of random variables:
Let U and V denote two random variables with expectation
My =E[U] and py, =E[V].

- The covariance of U and V is defined to be:
%y ZEIU - ) (7~ 1))

= E[UV] - uHy
- The variance of U i1s defined to be:
2 2
GUEE[(U_“U) ] = ZUU

= E[U]- (1)’



Let U=[U(1),...,UM)]" and V =[V(1), ..., V(M")]" denote two ran-
dom vectors.
The covariance matrix of U and V 1s defined as

Zumyray = ZuQ)yr)

M
Il

Zumyr(1) - UMV (M)
A direct way to obtain 2,

Zop = ELU-pp)(V —pp)']
= E[UV' ] uyny)
where
ny =E[U] = [E[U(D)],....E[UGN]]"
Uy =E[V]
Examples: U = X =[X(1), ..., X(M)]  and V = Y.

In the sequel we shall frequently make use of the following covariance matrix
and vector:

(1) ZXX - ]_E[(X_UX)(X_UX)T]

2
Ox(1y - Zx(1)x(M)

2
Zx(nx() - x|

(i) Zyy = E[(X_Hx)(y_uy)]

= [Zxayr - Zxany '

Linear minimum mean squared error estimator (LMMSEE)
A LMMSEE of Y is a linear estimator, 1.e. an estimator of the form
M

Y = ho+t Z h X(m) ,

m=1

A 2
which minimizes the MSE E[(Y -7Y) ].
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A linear estimator is entirely determined by the (M + 1) -dimensional vector

T
h=[hg, ... 0] .
* Orthogonality principle:

Orthogonality principle:
A necessary condition for A = [ho, ey h M] T to be the coefficient vec-
tor of the LMMSEE is that its entries fulfils the (M + 1) identities:

= M

i=1,..

, M

E[Y-Y] = E Y—%z(ﬁ Z th(mE =0 (2.1a)
- - m=1 .
) 2 g M o
E[(Y-Y)X())] = E|QY - i+ z h, X(mYDDX(j)| = 0,
E | EH (2.1b)

Proof:
A 2
Because the coefficient vector of the LMMSEE minimizes E[(Y —Y) ], its

components must satisfy the set of equations:
A 2
I -1 -0

=0 .., M.

Notice that the two expressions in (2.1) can be rewritten as:
E[Y-Y] =0 (2.24)
E[(Y-DX()] =0  j=1,...M (2.2b)

Important consequences of the orthogonality principle:

A Y -Y
E[(Y-Y)¥] =0 (2.3a)
E[(Y- )7 = E[Y?] - E[§’] o) Y
= E[(Y - ?)Y] ' JE[Y7]
|




Geometrical interpretation:
Let U and V denote two random variables with finite second moment, 1.e.

E[UZ] <o and E[Vz] <oco,
Then, the expectation E[ UV] can be viewed as the scalar or inner product
of U and V.

Within this interpretation:

- U and V are uncorrelated, i.e. E[UV] = 0 if and only if, they are
orthogonal,

- NE[ U2] is the norm (length) of U.
Interpretation of both equations in (2.3):

- (2.3a): the estimation error ¥ — ¥ and the estimate ¥ are orthogonal.

- (2.3b): results from Pythagoras’ Theorem.

Computation of the coefficient vector of the LMMSEE:
The coefficients of the LMMSEE satisfy the relationships:

M T
Hy = g+ Z hyMxmy = Bo+ (h) My

m=1

2yvy = Zyyvh

XY

XX

where h_E[hl, ...,hM]T and X =[X, ...,XM]T.

Proof:
Both identities follow by appropriately reformulating relations (2.1a) and
(2.1b) and using a matrix notation for the latter one.



Thus, provided (= XX)i1 exists the coefficients of the LMMSEE are given by:

- -1
B = (Zyy) Zyy (2.4a)

T T -1
ho - l-ly_(h) My = “Y_ZXY (ZX)() Hy (2.4b)

Example: Linear prediction of a WSS process
Let Y(n) denote a WSS process with
- zero mean, i.c E[Y(n)] = 0,
- autocorrelation function E[Y (n) Y (n + k)] = Ry (k)

We seek the LMMSEE for the present value of Y (n) based on the M past
observations Y(n—1), ..., Y(n — M) of the process. Hence,

-Y = Y(n)

-X(m) =Yn-m),m =1,...,M,ie.

X =[Y(n=1), ... Y(n—M)]"
Because [y, = 0 and Py = 0, it follows from (2.40) that
Computation of 2y and 2 .y

Sy = [E[Y(n—1)Y(n)], ..., E[¥(n— M)Y ()]

= [Ryy(1), .o, Ryy (M)]

TZxx T
E[Y(n-1)"]  E[¥(n-1)Y(n-2)] ... E[Y(n—1)Y(n—M)]
_ | E[Y(n-2)Y(n—1)]  E[Y(n-2)21 .. E[Y(n—2)Y(n—M)]
E[Y(n—M)Y(n-1)] E[Y(n-M)Y(n—2)] ...  E[Y(n—M)7]
[ Ry(0)  Ryp(1) Ryyp(2) oo Ryy(M—1)|
Ryy(1)  Ryp(0)  Ryp(1) .. Ryy(M—2)
= Ryy(2) R,y (1) Ryy(0) ... Ryy(M-3)
Ryy(M ~1) Ryy(M ~2) Ryy(M~3) ... Ryy(0)
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* Residual error using a LMMSEE:
The MSE resulting when using a LMMSEE is

A 2 2 T
E[(Y-7)] =0, —(F) Ty, (2.5)

Proof:
E[(Y - )] = E[(Y - 1)7]
— E[Y]-E[Y]

2.2. Minimum mean squared error estimators

* Conditional expectation:
Let U and V denote two random variables.
The conditional expectation of V' given U = u is observed is defined to be

E[V |u] EJ'vp(v|u)dv.

Notice that E[ V| U] is a random variable. In the sequel we shall make use of

the following important property of conditional expectations:
E[E[V|U]] = E[V]
Proof:



* Minimum mean squared error estimator (MMSEE):
The MMSEE of Y based on the observation of X (1), ..., X (M) is of the form:

Y (X(1), ..., X(M)) = E[Y|X(1), ..., X(M)]

Hence if X (1) = x(1), ..., X(M) = x(M) is observed, then
Y (x(1), ..., x(M)) = E[Y|x(1), ..., x(M)]
= Iyp(ylx(l), cy X(M))dy
Proof:

Let ¥ denote an arbitrary estimator. Then,
E[(7-1)] = E((F - T)-(r=T))]
Ao~ 2 A~ _ —~.2
< BT 2B DS T LT
A o~ 2 — 2: ’
=E[(Y-Y)]+E[(Y-7Y) ]
Thus,
N 2 .2
E[(Y-Y) ]2E[(Y-7Y) ]

with equality if, and only if, ¥ = Y . We still have to prove that
E[(Y-Y)¥Y-7)] = o0.
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Example: Multivariate Gaussian variables:

(Y, X(1), ..., X(M)]" ON (u, Z) with

= T
-U= [HY’ uX(l)’ ""p‘X(M)]

_s=| %y (Cxy)

zX Y ZXX

From Equation (6.22) in [Shanmugan] it follows that

Y = E[YX] = iy + (Tyy) (Sxy) (X hiy)

Bivariate case: M = 1,X(1) = X

2
-2xx = Ox»
zX Yy . . .
-2y = P00y, where p = 1s the correlation coefficient of ¥ and
XY XY O.0
X-Y
X.

In this case,

P = ELYX] = uy gy

0 poy 0, POy,

07y oy XD DGXD
EIEII:IEII:II:II:I i
hy, hy

We can observe that Y is linear, i.e. is the LMMSEE ¥ = Y in the bivariate
case. This is also true in the general multivariate Gaussian case. In fact,

V=7 if and only if, [ Y, X (1), ...,X(M)]Tis a Gaussian
random vector.




2.3. Time-discrete Wiener filters

* Problem:
Estimation of a WSS random sequence Y (n) based on the observation of

another sequence X (n). Without loss of generality we assume that
E[Y(n)] = E[X(n)] = 0.
The goodness of the estimator ¥ (n) is described by the MSE
A 2
E[(Y(n)-Y(n)) ].
We distinguish between two cases:
- Prediction:
Y (n) depends on one or several past observations of X (n) only, i.e.
Y(n) = Y(X(n), X(n,),...) with ny,n,, ... <n
- Filtering:
Y (n) depends on the present observation and/or one or many future obser-
vation(s) of X(n), i.e.
Y(n) = f’(X(nl), X(n,), ...) where at least one n, = n
Ifall n; < n, the filter is causal otherwise it is noncausal.

x(n) A v(n)A
: : Filtering\
|

| ] ] I I ‘ ,
:Jz -1 0 1'2 * l:n 212
|

Typical application: WSS signal embedded in additive white noise
X(n) = Y(n)+W(n) .

|

¥ .oa

where,
- W(n) is a white noise sequence,
- Y(n) is a WSS process
- Y(n) and W (n) are uncorrelated.

However, the theoretical treatment is more general as shown below.



2.3.1. Noncausal Wiener filters

* Linear Minimum Mean Squared Error Filter
We seek a linear filter

Y(n) = Z h(m)X (n—m) = h(n)*X(n)
m = —oo
A 2
which minimizes the MSE E[(Y (rn) — Y (n)) ].
Such a filter exists. It is called a Wiener filter in honour of his inventor.

» Orthogonality principle (time domain):
The coefficients of a Wiener filter satisfy the conditions:

[(Y(n) =¥ ()X (n-k)] =

0 - 0
= E| [ (n)- Z h(m)X(n—mdX(n-k)| =0, k=...,-1,0,1,...
O O

m = —oo

It follows from these identities (see also (2.3)) that

- A Y(n)-Y(n)
E[(Y(n) - ()7 (n)] = 0
E[(Y(n) - ¥(n))"] = E[¥(n)] ~E[¥(n)’]
= E[(¥(n) - T (n))Y (n)] rn)
|

With the definitions
RXX(k) =E[X(n)X(n+k)], RXY(k) =E[X(n)Y(n+k)]

we can recast the orthogonality conditions as follows:

Ryy(F) = S h(m)Ryy(k=m) k= ..=1,0,1,...

m = —oo

Ry (k) = h(k)*R (k) Wiener-Hopf equation
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» Orthogonality principle (frequency domain):
Sxy(f) - f{(f)Sxx(fj

where
Syy(f)=EF{R vy (k)}

e Transfer function of the Wiener filter:

Sxy(f)
Sxx(f)

* MSE of the Wiener filter (time-domain formulation):

H(f) =

E[(Y()-T()] =0y~ § h(mRyy(m)

m = —oo

Proof:
E[(Y(n) - F(n))"] = E[¥(n)] —E[ (n) ¥ ()]

* MSE of the Wiener filter (frequency-domain formulation):
We can rewrite the above identity as:

E[(Y ()~ 7(n))"] = Ryy(0) - Z h(m)Ryx (=m)

m = —oo
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A 2
E[(Y(n)—Y(n)) ] is the value p(0) of the sequence

p(k) = Ryy(k)_ Z h(m)RYX(k—m)

m = —

- Ryy(k) - h(k)*RYX(k)

T S ¢y ()
P(f) = Syy (/) =H()Syy(f) = Syy(f)—%
Hence,
) 1/2
E[(Y()-T(n)] = p(0) = [ P(/)df
—-1/2
1/2 2
) S vy (/)
E[(Y(n) - T(n))] = [ {Syy(f)%}df
—-1/2 XX

2.3.2. Causal Wiener filters

A. X (n) is a white noise.
We first assume that X (n) is a white noise with unit variance, i.e.
E[X(n)X(n+k)] = o(k).

* Derivation of the causal Wiener filter from the noncausal Wiener filter:
Let us consider the noncausal Wiener filter

Y(n) = Z h(m)X (n—m)

m = —oo
whose transfer function is given by
Sxy(f)
XY
H = ———=3S :
(f) SXX(f) Xy(f}

Then, the causal Wiener filter ¥ -(n) results by cancelling the noncausal part
of the non-causal Wiener filter:

Y.(n) = Z h(m)X (n—m)
m=0
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Sketch of the proof:

Y(n) can be written as
-1

Y(n) = Z h(m)X (n—m) + Z h(m)X (n—m)

"R oooooo fbhoooooo
=U V=Y.n)

Because X (n) is a white noise, the causal part V' = ¥ ~(n) and the noncausal

part U = Y(n)-Y o(n) of Y (n) are orthogonal. It follows from this property

A

Y(n)—|¥,.(n) Y()
Y(n) - Y (n)

,\

VR .

that ¥ ~(n) and Y (n) are orthogonal, i.e. that Y ~(n) minimizes the MSE

within the class of linear causal estimators.

[

B. X (n) is an arbitrary WSS process whose spectrum satisfies the Paley-
Wiener condition.

Usually, the above truncation procedure to obtain ¥ +(n) does not apply

because U and V' are correlated and therefore not orthogonal in the general
case.

* Causal whitening filter:
However, we can show (see the Spectral Decomposition Theorem below) that

provided S (/) satisfies the Paley-Wiener condition (see below) then X (n)

can be converted into an equivalent white noise sequence Z(»n) with unit
variance by filtering it with an appropriate causal filter g(n),
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(Causal)
Whitening Filter |

g(n)

X (n)

Z(n)  E[Z(n)Z(n+ k)] = 0(k)

This operation is called whitening and the filter g(#) is called a whitening
filter.
equivalent = there exists another causal filter g(n) so that

X(n) = g(n)*Z(n):

Z(n) g(n) ——X(n)
Notice that 1f
G(f)=F{g(n}
G(f)=F{&(n)
then
o) 1 We shall see that a
IGNI" =S XX(f ) whitening filter exists
. ) such that (2_6)
|G(f)| = Syx(f) f;(f) — G(f)_l

Causal Wiener filter
Making use of the result in Part A, the block diagram of the causal Wiener fil-
ter 1s

(Causal)
N . Y4 N
X( n) Whitening Filter (n) C_alu sal part of . Yc(n)

S,y (f) is obtained from S (/) according to

S,v(f) = G()7S 4y (/)
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Proof:

L]
Hence, the block diagram of the causal Wiener filter is:
Whitening Filter Z (n) Causal part of A
X(n) -1 0 Y (n)
g(n) FoA{GU) S yy (/)

Spectral Decomposition Theorem:
Let S v, (/) satisfies the so-called Paley-Wiener condition:

1/2

I 10g(SXX(f))df > —00
-1/2
Then S (/) can be written as

S vy () = G() G(f)

with G(f)" and G(f) satisfying

e = lery

Moreover, the sequences

2
"= 5,00 |

g(n) =F {G(/)}

g(n) =F {6}
-1, \* -1 -
g () =F {1/6()"
g '(n) =F {1/G(f)}

satisfy

_ -+
g(n)Jr =g 1(n) =0 n<0 Causal sequences

g(n) = g_l(n)_ =0 n>0  Anticausal sequences

2-15



o Whitening filter (cont’d):
The sought whitening filter used to obtained Z(n) is

g(n) = g \(n)

and
. +
g(n) = g(n) .
It can be easily verified that both sequences satisfy the identities in (2.6).

2.3.3. Finite Wiener filters

 Finite linear filter:
M

2
Y(n) = Z h(m)X (n—m)
m=—-M,
» Wiener-Hopf equation:

By applying the orthogonality principle we obtain the Wiener-Hopf system of
equations:

2xy = Zxxh
where
T
h=[h(-M), ..., h(M,)]
and
T
2xy = [Ryy (M), s Ryy(M))]
2yx =
L R,,(0) Ry (1) Ry (2) o Ry(M,+M,) |
Ryy(1) Ry (0) Ryy(1) o Ry (M + My~ 1)
= Ry(2) Ryy(1) R,y (0) o Ry (M| + My —2)
Ry (M + M) Ryy (M +My—1) Ry (M, +M,~2) ... R,y (0)

Coefficient vector of the finite Wiener filter:

1
h=(Zyyx) Zxy

provided 2y is invertible.
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