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Lecture 2

Parameter estimation of specular

components in channel impulse responses

Xuefeng Yin



Multipath Propagation Environment

Graduate course: Propagation Channel Characterization, Tongji University 2 / 70

Tx

Scatterer

Scatterer

Moving Scatterer

Path 1

P
at

h
D

Rx

■ Dispersion dimensions : delay, direction of departure (DoD),
direction of arrival (DoA), polarizations and Doppler frequency

■ Dispersion parameters of a propagation path:
• center of gravity per dimension

■ Time-evolution behavior of these parameters



An Experimental Example of the Dispersion of a
Radio Channel
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■ MIMO channel sounder: Propsound

■ Tx and Rx Arrays: 50-element omni-directional dual-polarized array

■ 5.25 GHz Carrier frequency
■ 100 MHz bandwidth

Tx trolley Rx trolley Tx/Rx Array



An experimental example: direction and delay
dispersion of an indoor propagation channel
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 90 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 95 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 100 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 105 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 110 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 115 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 120 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 125 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 130 ns:



An experimental example: direction and delay
dispersion of an indoor propagation channel

Graduate course: Propagation Channel Characterization, Tongji University 13 / 70

■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 135 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 140 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 145 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 150 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 155 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 160 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 165 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 170 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 175 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 180 ns:
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■ Average delay power spectrum

0 10 20 30 40 50 60 70
−120

−100

−80

Delay in sample (sample interval: 5 ns )

P
ow

er
 in

 d
B

 
■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 185 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 190 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 195 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 200 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 205 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 210 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 215 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 220 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 225 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 230 ns:



An experimental example: direction and delay
dispersion of an indoor propagation channel

Graduate course: Propagation Channel Characterization, Tongji University 33 / 70

■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 235 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 240 ns:
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■ Average delay power spectrum

0 10 20 30 40 50 60 70
−120

−100

−80

Delay in sample (sample interval: 5 ns )

P
ow

er
 in

 d
B

 
■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 245 ns:



An experimental example: direction and delay
dispersion of an indoor propagation channel

Graduate course: Propagation Channel Characterization, Tongji University 36 / 70

■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 250 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 255 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 260 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 265 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 270 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 275 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 280 ns:
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■ Average delay power spectrum
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■ Bartlett spectrum w.r.t. azimuth and elevation of departure

at delay 285 ns:



Signal Model
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Received signal vector:

Y (t) =
L∑

ℓ=1

s(t;θℓ) +

√
N0

2
W (t),

where

■ Y (t) ∈ CM2: output of the Rx array.

■ W (t) ∈ CM2: circularly symmetric spatially and temporally white
Gaussian noise with spectral height N0.

■ s(t;θℓ) ∈ CM2: signal contributed by the ℓth path at the output of
the Rx array.



Signal Model
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The signal contribution of individual specular path:

s(t;θℓ)
.
=[s1(t;θℓ), . . . , sM2

(t;θℓ)]
T

=exp{j2πνℓt}C2(Ω2,ℓ)AℓC1(Ω1,ℓ)
Tu(t− τℓ).

with
■ θℓ

.
= [Ω1,ℓ,Ω2,ℓ, τℓ, νℓ,Aℓ] : parameter vector of the ℓth path;

■ Ck(Ω)
.
=[ck,1(Ω), ck,2(Ω)] ∈ CMk×2, k=1, 2 : response of Array k

in direction Ω;

■ Aℓ
.
=

[
αℓ,1,1 αℓ,1,2

αℓ,2,1 αℓ,2,2

]
∈ C2×2 : polarization matrix ;

■ u(t)
.
= [u1(t), ..., uM1

(t)]T ∈ C
M1 : input signal vector.



Signal Model
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Definition of a direction:
Direction

S2

rh

rv

rz

(0, 0, 1)

(0, 1, 0)

(1, 0, 0)

sin(θ)

cos(θ)

sin(θ) sin(φ)
sin(θ) cos(φ)

θ

φ
O

Ω

Ω = e(φ, θ)
.
= [cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)]T ∈ S2



The SAGE Algorithm

Graduate course: Propagation Channel Characterization, Tongji University 47 / 70

θ̂(n)

For ℓ = 1, . . . , L

θ̂(n+ 1)

achieved ?

θ̂SAGE

Yes

No

n← n+ 1SAGE iteration step

θ̂(0)

for updating θ̂ℓ

Convergence

Initialization
n = 0

■ Parameter vector:

θ
.
= [θ1, ...,θL].

■ Incomplete data: Y (t)

■ Hidden data: xℓ(t)

xℓ(t)
.
= s(t;θℓ)+

√
N0

2
W (t),

ℓ = 1, . . . , L

(not the only choice)



The SAGE Algorithm
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■ Expectation (E-) step:

x̂ℓ(t) = E[xℓ(t)|y(t), θ̂(n)]

= y(t)−
L∑

ℓ′=1,ℓ′ 6=ℓ

s(t; θ̂ℓ′(n))

where θ̂(n) is the current estimate of θ.



The SAGE Algorithm
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■ Objective function maximized in the M-step:

z(θ̄ℓ;xℓ)
.
= f(θ̄ℓ)

HD(Ω2,ℓ,Ω1,ℓ)
−1f(θ̄ℓ)

where

◆ θ̄ℓ
.
= [Ω1,ℓ,Ω2,ℓ, τℓ, νℓ];

◆ D(Ω2,ℓ,Ω1,ℓ)
.
=

[
C2(Ω2,ℓ)

H C2(Ω2,ℓ)
]

⊗
[
C1(Ω1,ℓ)

H C1(Ω1,ℓ)
]
;



The SAGE Algorithm
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■ Objective function maximized in the M-step:

z(θ̄ℓ;xℓ)
.
= f(θ̄ℓ)

HD(Ω2,ℓ,Ω1,ℓ)
−1f(θ̄ℓ)

where

◆ f (θ̄ℓ)
.
=




cH

2,1(Ω2,ℓ)Xℓ(τℓ, νℓ)c1,1(Ω1,ℓ)
∗

cH

2,1(Ω2,ℓ)Xℓ(τℓ, νℓ)c1,2(Ω1,ℓ)
∗

cH

2,2(Ω2,ℓ)Xℓ(τℓ, νℓ)c1,1(Ω1,ℓ)
∗

cH

2,2(Ω2,ℓ)Xℓ(τℓ, νℓ)c1,2(Ω1,ℓ)
∗


 .

◆ Xℓ(τℓ, νℓ) is a M2 ×M1 dim. matrix with entries

Xℓ,m2,m1
(τℓ, νℓ) =

I∑

i=1

exp(−j2πνℓti,m2,m1
)

·

Tsc∫

0

u∗(t− τℓ)xℓ(t+ ti,m2,m1
)dt,



The SAGE Algorithm
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■ Conditions for D(Ω2,Ω1) to be non-singular:

det
(
D(Ω2,Ω1)

)
6= 0,

which holds, if and only if,

ck,1(Ωk) 6= γk · ck,2(Ωk)

for some complex number γk, k = 1, 2.

◆ A necessary and sufficient condition for D(Ω2,Ω1) to be
always invertible is that the vectors ck,1(Ωk) and
ck,2(Ωk), k = 1, 2 are linearly independent for any Ω2 and Ω1.

◆ When D(Ω2,Ω1) is non-invertible, the four coefficients in the
polarization matrix Aℓ cannot be estimated separately.



The SAGE Algorithm
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■ Maximization (M-) step:

τ̂
′′

ℓ = argmax
τℓ

z(φ̂
′

1,ℓ, θ̂
′

1,ℓ, φ̂
′

2,ℓ, θ̂
′

2,ℓ, τℓ, ν̂
′

ℓ; x̂ℓ)

ν̂
′′

ℓ = argmax
νℓ

z(φ̂
′

1,ℓ, θ̂
′

1,ℓ, φ̂
′

2,ℓ, θ̂
′

2,ℓ, τ̂
′′

ℓ , νℓ; x̂ℓ)

θ̂
′′

2,ℓ = argmax
θ2,ℓ

z(φ̂
′

1,ℓ, θ̂
′

1,ℓ, φ̂
′

2,ℓ, θ2,ℓ, τ̂
′′

ℓ , ν̂
′′

ℓ ; x̂ℓ)

φ̂
′′

2,ℓ = argmax
φ2,ℓ

z(φ̂
′

1,ℓ, θ̂
′

1,ℓ, φ2,ℓ, θ̂
′′

2,ℓ, τ̂
′′

ℓ , ν̂
′′

ℓ ; x̂ℓ)

θ̂
′′

1,ℓ = argmax
θ1,ℓ

z(φ̂
′

1,ℓ, θ1,ℓ, φ̂
′′

2,ℓ, θ̂
′′

2,ℓ, τ̂
′′

ℓ , ν̂
′′

ℓ ; x̂ℓ)

φ̂
′′

1,ℓ = argmax
φ1,ℓ

z(φ1,ℓ, θ̂
′′

1,ℓ, φ̂
′′

2,ℓ, θ̂
′′

2,ℓ, τ̂
′′

ℓ , ν̂
′′

ℓ ; x̂ℓ).

α′′
ℓ = (IPTsc)

−1D(Ω′′
2,ℓ,Ω

′′
1,ℓ)

−1f(θ̄
′′

ℓ )

αℓ
.
= vec(Aℓ)



Initialization
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■ Successive Interference Cancellation:

y(ℓ)(t) = y(t)−
ℓ−1∑

ℓ′=1

s(t; θ̂ℓ′(0))

■ Non-Coherent Maximum Likelihood (NC-ML) estimator for
initializing τ̂ℓ, ν̂ℓ, and Ω̂2,ℓ.

■ Coherent Maximum Likelihood (C-ML) estimator for initializing
Ω̂1,ℓ and α̂ℓ.



Initialization
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■ NC-ML estimate of delay τℓ

τ̂ℓ(0) = argmax
τℓ

{ I∑

i=1

M2∑

m2=1

M1∑

m1=1

∣∣∣∣
∫ Tsc

0

y(ℓ)(t+ ti,m2,m1
)u∗(t− τℓ)dt

∣∣∣∣
2}

.

■ NC-ML estimate of Doppler frequency νℓ:

ν̂ℓ(0) = argmax
νℓ

{ M2∑

m2=1

M1∑

m1=1

∣∣∣∣
I∑

i=1

exp(−j2πνℓti,m2,m1
)

·

∫ Tsc

0

y(ℓ)(t+ ti,m2,m1
)u∗

(
t− τ̂ℓ(0)

)
dt

∣∣∣∣
2}

.



Initialization
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■ NC-ML estimate of direction of arrival Ω2,ℓ:

Ω̂2,ℓ(0) = argmax
Ω2,ℓ

{ M1∑

m1=1

[
|c̃H2,1(Ω2,ℓ)y

(ℓ)
m1

∣∣2 + |c̃H2,2(Ω2,ℓ)y
(ℓ)
m1

∣∣2

−2R{y(ℓ)H
m1

c̃2,2(Ω2,ℓc̃
H
2,1(Ω2,ℓ)y

(ℓ)H
m1

c̃H2,2(Ω2,ℓ)c̃2,1(Ω2,ℓ)}

]}
.

■ C-ML Estimate of direction of departure Ω1,ℓ:

Ω̂1,ℓ(0) = argmax
Ω1,ℓ

{
z
(
Ω̂2,ℓ(0),Ω1,ℓ, τ̂ℓ(0), ν̂ℓ(0); ŷℓ

)}

■ C-ML Estimate of the complex polarization vector αℓ

α̂ℓ(0) = (IPTsc)
−1D

(
Ω̂2,ℓ(0), Ω̂1,ℓ(0)

)−1
f
(ˆ̄θℓ(0)

)
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Characteristics of the measurement setup:

■ MIMO channel sounder: Propsound

■ Tx Array: 3x8 omni-directional dual-polarized array (M1=54),

■ Rx Array: 4x4 planar dual-polarized array (M2=32),

■ 2.45 GHz Carrier frequency and 100 MHz bandwidth

Tx Tx Array Rx Rx Array
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Investigated propagation environment:

Surrounding of the Rx

Surrounding of the Tx

Map of the environment
Rx

Tx



Experimental Investigations (NLOS)

Graduate course: Propagation Channel Characterization, Tongji University 58 / 70

Estimated Directions of Arrival (DoAs) Reconstructed Paths

Estimated Directions of Departure (DoDs)
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Estimated Directions of Arrival (DoAs) Reconstructed Path 21

Estimated Directions of Departure (DoDs)
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Estimated Directions of Arrival (DoAs) Reconstructed Path 24

Estimated Directions of Departure (DoDs)
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Estimated polarization:
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■ Blue ellipses : polarization ellipses calculated using
[
âd,1,1 âd,2,1

]T
,

■ Red ellipses : polarization ellipses calculated using
[
âd,1,2 âd,2,2

]T
.
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Scatter plot of the estimated cross-polarization discrimination (XPD) of
the individual paths:

r̂ℓ,1 in dB

r̂ℓ,2 in dB

■ r̂ℓ,1 =
∣∣α̂ℓ,1,1/α̂ℓ,2,1

∣∣2 and r̂ℓ,2 =
∣∣α̂ℓ,2,2/α̂ℓ,1,2

∣∣2
■ The symbols denote the types of scatterers identified along the

paths: facade (F), roof (R), edge (E) of buildings as well as tree
(T), sculpture (S), and wall (W).
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XPDs versus the interaction type:

Group Interaction type/scatterers XPDs in dB
along the propagation path r̂ℓ,1 r̂ℓ,2

1 Diffraction around the roof [15, 28] [16, 30]
edge of B3

2a Reflection/scattering by [−10, 17] [−6, 16]
at least one tree

2b Reflection/scattering only [5, 22] [−6, 16]
by man-made structures
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Directions of incidence (top) and directions of departure (bottom):
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Estimated polarization:
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Reconstructed one-bounce (left) and two-bounce (right) propagation
paths:
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Scatter plot of the estimated cross-polarization discrimination (XPD) of
the individual paths:
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The symbols denote the types of scatterers identified along the paths:
facade (F), roof (R), edge (E) of buildings as well as tree (T), sculpture
(S), ground (G) and wall (W).
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XPDs versus the interaction type:

Group Interaction type along the
propagation path

XPDs in dB

r̂ℓ,1 r̂ℓ,2
1 LOS and diffraction by the

roof edge of B3
[9, 17] [21, 33]

2a Reflection/scattering by at
least one tree

[−18, 24] [2, 15]

2b Reflection/scattering only by
man-made structures

[10, 28] [0, 17]
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Scatter plot of the estimated singular values of the individual paths:

P̂ℓ in dB

γ̂ℓ in dB

■ γ̂ℓ = ς̂ℓ,min/ς̂ℓ,max:

◆ ς̂ℓ,min: minimum of the estimated singular values of Âℓ

◆ ς̂ℓ,max: maximum of the estimated singular values of Âℓ

■ P̂ℓ
.
= ς̂2ℓ,min + ς̂2ℓ,max: the estimated total path gain

.
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■ A SAGE algorithm is derived for estimation of path parameters:
directions of departure, directions of arrival, propagation delay,
Doppler frequency, and polarization matrix.

■ A detailed insight into the propagation mechanisms is obtained by
exploring the polarization characteristics of individual propagation
path:

◆ Identify the type of scatterers and interactions;
◆ Relate the polarization characteristics of the paths to the

interaction types.
■ This insight is of paramount importance

◆ For the design of realistic stochastic models of the propagation
channel for MIMO system applications;

◆ To enhance the prediction accuracy of deterministic models for
field prediction.


	
	 Multipath Propagation Environment
	An Experimental Example of the Dispersion of a Radio Channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	An experimental example: direction and delay dispersion of an indoor propagation channel
	 Signal Model 
	Signal Model
	Signal Model
	The SAGE Algorithm
	The SAGE Algorithm
	The SAGE Algorithm
	The SAGE Algorithm
	The SAGE Algorithm
	The SAGE Algorithm
	Initialization
	Initialization
	Initialization
	Experimental Investigations
	Experimental Investigations
	Experimental Investigations (NLOS)
	Experimental Investigations (NLOS)
	Experimental Investigations (NLOS)
	Experimental Investigations (NLOS)
	Experimental investigations (NLOS)
	Experimental investigations (NLOS)
	Experimental investigations (LOS)
	Experimental investigations (LOS)
	Experimental investigations (LOS)
	Experimental investigations (LOS)
	Experimental investigations (LOS)
	Experimental investigations (LOS)
	Conclusions



