
100 Chapter 4 Transform Coding

4.4. THE DISCRETE COSINE TRANSFORM

Although the Karhunen–Loeve transform is the optimum transform in terms of en-
ergy compaction, it suffers from the signifi cant diffi culty that the transform needs to 
be defi ned for each picture (or even each 8 � 8 block within a picture). This requires 
a signifi cant amount of computation both to calculate the covariance matrix and then 
the eigenvectors that are used as the basis vectors of the transform. In addition, the 
transform basis functions (eigenvectors) required for each picture (or each 8 � 8 
block within a picture) need to be transmitted to the decoder so that the picture can 
be correctly decoded. This represents a signifi cant overhead.

For this reason, a fi xed transform known as the discrete cosine transform (DCT) is 
commonly used in picture and video coding applications. Although suboptimal when 
compared to the Karhunen–Loeve transform, it has the advantage that it can be used 
without the need for calculating covariance matrices and eigenvectors. In addition, 
there is no need to transmit information on the basis vectors used to the receiver.

The basis vectors of an N-point DCT in one-dimension are defi ned as
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Similarly, the inverse DCT is defi ned as
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Table 4.1 Horizontal eigenvalues for the first picture in the 
“Mobile and Calendar” sequence.

Eigenvalue number Eigenvalue Percentage of energy

1 25,664 82.4
2 2,104 6.8
3 1,224 3.9
4 877 2.8
5 615 2.0
6 383 1.2
7 203 0.7
8 56 0.2

 �



The basis vectors for an eight-point DCT are given in the matrix shown in 
Figure 4.8. They are also shown in Figure 4.9.

These are just sampled versions of cosine waveforms of increasing frequency 
ranging from 0 periods per vector (i.e., constant) in the case of the fi rst vector to 
3.5 periods per vector in the case of the last vector with each vector containing 0.5 
 additional periods to the one before it.

Comparing the eigenvectors from the Karhunen–Loeve transform shown in 
Figure 4.7 with those for the DCT shown in Figure 4.9, we note a remarkable 
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Figure 4.8 Basis functions for the DCT.
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Figure 4.9 Basis vectors for the eight-point discrete cosine transform.
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similarity in general shape. The most signifi cant difference is that several of the 
corresponding eigenvectors in each fi gure are approximately the negative of each 
other. However, the effect of changing the sign of an eigenvector is just that the sign 
of the associated transform coeffi cients will be changed—energy compaction is 
identical. The DCT then seems to be a reasonable approximation to the Karhunen–
Loeve transform at least for this picture.

For pictures, a two-dimensional DCT is required. The forward and reverse 
transform are calculated according to the equations
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The basis vectors t(u,v) in this case are two-dimensional arrays defi ned by
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Pictures of the 64 two-dimensional basis vectors from an 8 � 8 transform are 
shown in Figure 4.10 that includes an offset so that negative values appear dark and 
positive values appear light with mid-gray representing values close to zero. Vertical 
frequency increases from top to bottom whereas horizontal frequency increases from 
left to right. Any 8 � 8 pixel block can be represented by a weighted sum of these 
two-dimensional basis vectors.

Fortunately, the DCT is a separable transform. This means that the  two-
 dimensional transform can be obtained by fi rst applying a one-dimensional 
 transform across the rows of the data. The result after the horizontal transform 
has a  one- dimensional transform applied vertically to yield the fi nal two-dimen-
sional  transform result. This greatly simplifi es the transform procedure as well as 
 signifi cantly increasing the speed of the transform.



EXAMPLE 4.3—MATLAB

For the 8 � 8 pixel block shown in Figure 4.11, calculate the two-dimensional DCT. Hence, 
show that the picture can be represented by a weighted sum of the two-dimensional basis 
vectors shown in Figure 4.10.

This picture is represented by the 8 � 8 pixel array of data shown in Figure 4.12 where 
white is represented by 255 and black by 0.

Figure 4.10 Basis vectors for two-dimensional discrete cosine transform.

Figure 4.11 Block to be analyzed in Example 4.3.
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As explained earlier, the two-dimensional DCT can be calculated by fi rst taking the one-
dimensional DCT horizontally and then vertically. After applying the horizontal DCT and 
rounding to the nearest integer we obtain the result shown in Figure 4.13.

The fi nal two-dimensional DCT is obtained by repeating the one-dimensional discrete 
cosine transform down the columns of this result. The fi nal result is shown in Figure 4.14.

255255255255255255255255

255255255255255255255255

255 255 255 0000 255

255 255 255 0000 255

255 255 255 0000 255

255 255 255 0000 255

255255255255255255255255

255255255255255255255255

Figure 4.12 Numerical picture data for Example 4.3.
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Figure 4.13 Data of Figure 4.12 after one-dimensional horizontal DCT.
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Figure 4.14 Data of Figure 4.12 after two-dimensional DCT.



The weighted two-dimensional basis vectors for each nonzero term in the two-dimen-
sional DCT are shown in Figure 4.15. Also shown is the result when the current weighted 
basis vector is added to the sum of all the weighted basis vectors appearing above it in Figure 
4.15. When all the weighted basis vectors have been summed, we end up with the original 
block. The last few basis vectors make only a small change to the fi nal block despite the fact 
that the block chosen has a number of sharp discontinuities that usually imply signifi cant 
energy at high frequencies. A smoother block would show even less distortion when high 
frequency basis vectors were omitted. �

4.4.1. Choice of Transform Block Size

Example 4.3 uses a block size of 8 � 8 pixels. The appropriate block size is a com-
promise between the amount of compression achieved (which tends to increase with 
block size), the correlation within the picture (which tends to decrease with block 
size), the ability to adapt to local picture statistics (which is better as block size 

Figure 4.15 Weighted two-dimensional basis vectors for the block of Figure 4.11 together with the 
result from summing the weighted basis vectors to reconstruct the original block.
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decreases), and computational complexity (which increases with block size). The 
block size is invariably chosen to be a power of two (i.e., 4 � 4, 8 � 8, and 16 � 16 
pixels) as this simplifi es computational complexity.

EXAMPLE 4.4—MATLAB

For the fi rst picture of the “Mobile and Calendar” sequence, divide the picture into square 
blocks of size N � 2, 4, 8, 16, 32, and 64 pixels and calculate the DCT of each block. Now 
retain only the top N/2 � N/2 pixels and calculate the RMS error for each reconstructed pic-
ture. Hence, comment on the most appropriate choice of transform block size.

The MATLAB function dct2(A) will calculate the two-dimensional DCT of a block of 
data. Appropriate MATLAB code to perform this task is given below. The DCT block size is 
set by the variable tf_size.

tf_size � 8;
for irow � 1:tf_size:row
 for icol � 1:tf_size:col
  dct_block � dct2(A(irow:irow1(tf_size-1),icol:icol�(tf_size-1)));
  limit � (tf_size/2)�1;
  dct_block(limit:tf_size,:) � zeros((tf_size/2),tf_size);
  dct_block(:,limit:tf_size) � zeros(tf_size,(tf_size/2));
   rec(irow:irow�(tf_size-1),icol:icol�(tf_size-1)) � round(idct2(dct_block));
  end
end
  rms � sqrt(mean(mean((A - rec). * (A-rec))));

The result when applied to the picture is shown in Figure 4.16.
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Figure 4.16 Result of deleting all but the top left quarter coeffi cients for the fi rst picture of the 
“Mobile and Calendar” sequence.



It is clear that most of the savings are achieved by the time a block size between 8 � 8 
and 16 � 16 pixels is reached. Hardware complexity considerations lead to the choice of an 
8 � 8 pixel block size. �

4.4.2. Quantization of DCT Transform Coefficients

We have now succeeded in transforming integer pixel values into real transform 
coeffi cients. Transmitting these coeffi cients without any further processing would 
probably lead to an increase in the number of bits of information required to repre-
sent the picture. However, the transform has packed most of the energy of the picture 
into a small number of coeffi cients. Quantizing these coeffi cients and then transmit-
ting only the signifi cant ones can result in a signifi cant saving. The question remains 
how best to do this. As the energy is compacted primarily into the fi rst few (low 
frequency) coeffi cients, one approach would be to simply not transmit a number of 
the other (high frequency) coeffi cients. This is considered in Example 4.5.

BEXAMPLE 4.5—MATLAB

For the fi rst luminance picture in the sequence “Mobile and Calendar,” calculate the resulting 
picture when only the top left 4 � 4, 2 � 2, and 1 � 1 DCT coeffi cients are retained.

The results are shown in Figure 4.17. Even retaining the top 4 � 4 low-frequency coef-
fi cients (Fig. 4.17a) leads to signifi cant blurring in the reconstructed picture. Reducing this 
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Figure 4.17 Effect of deleting high-frequency DCT coeffi cients: (a) top 4 � 4 coeffi cients retained; 
(b) top 2 � 2 coeffi cients retained; (c) top 1 � 1 coeffi cient retained.
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Figure 4.17 (Continued)



to the top 2 � 2 low-frequency coeffi cients (Fig. 4.17b) greatly increases the blurring. In ad-
dition, the edges of the individual 8 � 8 pixel blocks start to become obvious. When only the 
single DC coeffi cient is retained (Fig. 4.17c) then the picture becomes a series of blocks. This 
is hardly surprising as retaining only the DC coeffi cient means that each pixel in the 8 � 8 
pixel block is replaced by the average value of the block. �

The previous example has demonstrated that performing the DCT and then 
simply deleting the higher frequency coeffi cients is not a satisfactory approach if 
high-quality reconstructed pictures are required. Although low-frequency informa-
tion is almost always important, simply removing high-frequency information leads 
to blurring at sharp edges where high-frequency information is signifi cant.

After quantization, it is desirable that the maximum number of coeffi cients are 
zero as this reduces the amount of information that needs to be transmitted. For 
this reason, a quantizer with a larger than normal “dead zone’’ (i.e., a quantization 
region where the coeffi cient will be set to zero) as shown in Figure 4.18 is commonly 
employed.

By comparison, a completely linear quantizer would have decision levels at … 
�2.5Q, �1.5Q, �0.5Q, �0.5Q, �1.5Q, �2.5Q… and reconstruction levels at …�2Q, 
�Q, 0, �Q, �2Q… The larger dead zone ensures that all coeffi cients in the range �Q 
to Q are set to zero. The value of the quantizer (Q) is chosen by the user to ensure an 
adequate representation of the picture. More is said on this topic later.

Input

Output

Q 2Q 3Q–3Q –2Q –Q

1.5Q

3Q

4.5Q

–4.5Q

–3Q

–1.5Q

Figure 4.18 Quantizer with central dead zone.
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4.4.3. Quantization of DCT Coefficients Based 
on the Human Visual System

Despite the results shown in Example 4.5, it is well known that the sensitivity of the 
human visual system does indeed decrease as the spatial frequency (usually mea-
sured in cycles per degree of arc) increases. Figure 4.19 shows an indicative plot of 
the relative spatial frequency response of the eye as a function of spatial frequency 
measured in cycles per degree of sight.

It is clear that the response peaks at a spatial frequency around 5–10 cycles/
degree and falls off sharply at higher frequencies. However, even at these higher 
frequencies a signifi cant signal will still be observable.

Almost invariably, the transform coeffi cients are quantized by a linear or near 
linear quantizer. However, the step size of the quantizer can be varied according 
to the spatial frequency represented with the step size increasing as the spatial fre-
quency increases. This ensures that high-frequency coeffi cients will be quantized 
to zero unless they are suffi ciently large that they are likely to be observable to the 
human visual system.

One way that this can be done is to use a quantization relationship such as
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where Ĉi,j is the value of the quantized transform coefficient, Ci,j is the value of 
the original transform coefficient, Q is the quantizer step size for a  particular 
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Figure 4.19 Relative spatial frequency response of human visual system.



block of data, and Wi,j is the weighting value for this particular transform 
coefficient.

The weighting value Wi,j increases as the horizontal and vertical frequencies 
increase. An example of a matrix of weighting values is shown in Figure 4.20.

Thus if the quantizer step size is 16 and the value of c(4,4)8 for a particular 
intrablock is 75 then the value of the quantized DCT coeffi cient, noting that the 
 appropriate quantizer matrix value is 32, would be calculated as shown.
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If the coeffi cient c(1,1) had the same value of the original DCT coeffi cient and 
the quantizer step size was unchanged then the quantized DCT coeffi cient value 
would be calculated as shown.
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EXAMPLE 4.6

An 8 � 8 block of data from a picture is shown in Figure 4.21.

(a) Calculate the two-dimensional DCT of the data.
(b) Quantize the data using a quantizer step size of 8.
(c)   Quantize the data using a quantizer step size of 8 using the weighting matrix given 

in Figure 4.20.

8 16 19 22 26 27 29 34
16 16 22 24 27 29 34 37
19 22 26 27 29 34 34 38
22 22 26 27 29 34 37 40
22 26 27 29 32 35 40 48
26 27 29 32 35 40 48 58
26 27 29 34 38 46 56 69
27 29 35 38 46 56 69 83

Figure 4.20 Typical values of weighting matrix Wi,j.

8The DC DCT coeffi cient would of course be c(0,0).
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Figure 4.21 Picture data for Example 4.6
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(a)  The result after a two-dimensional DCT performed in MATLAB after rounding to 
the nearest integer is shown in Figure 4.22.

(b)  Quantizing using a quantizer step size of 8 and rounding to the nearest integer yields 
the quantized DCT coeffi cients shown in Figure 4.23.

(c)  Quantizing when the weighting factors used in Figure 4.20 are employed yields the 
results shown in Figure 4.24.
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Figure 4.22 Picture data of Figure 4.21 after two-dimensional DCT.

161 –61 0 –13 0 64–2

–8 –1 0 110 03 –1

2030–1 0 03

160–4 0 00–2

21–1 0 –1 0 01

–7 3 8–3 –3 0 00

420 –3 –1 0 13

–23 –14 21 12 –9 –3 0 0

Figure 4.23 Quantized DCT coeffi cients—no weighting matrix.

161 –30 0 0–5 0 11

0030–4 0 01

00100 0 00

0020–1 0 00

00000 0 00

0020–2 0 00

00100 0 00

–7 2 4–4 –1 0 00

Figure 4.24 Quantized DCT coeffi cients—weighting matrix in Figure 4.20 are employed.



Note that the number of DCT coefficients quantized to zero when the weighting 
matrix is used (45) is considerably greater than when the quantization matrix is not 
employed (16). �

4.4.4. Coding of Nonzero DCT Coefficients

We have now produced an 8 � 8 array of quantized DCT coeffi cients many of which 
are zero. We need to be able to entropy code these coeffi cients and then transmit 
them to the receiver. The fi rst step of this process is to scan the two-dimensional 
array of coeffi cients into a one-dimensional array. This is achieved by scanning the 
coeffi cients in the zig-zag scan order shown in Figure 4.25.

This order ensures that the DC coeffi cient is scanned fi rst followed by the low-
frequency AC coeffi cients. Higher frequency coeffi cients are scanned toward the 
end of the scan. Because there is usually less energy at high-frequencies and also 
because high-frequency coeffi cients are often quantized more coarsely than low-
frequency coeffi cients to match the characteristics of the human visual system, it is 
likely that the last nonzero coeffi cient will be met well before the end of the scan. As 
we shall see, the scan process can be terminated after the last nonzero coeffi cient.

After the zig-zag scanning, each nonzero coeffi cient is grouped with a the run 
of zero coeffi cients that proceeds it to form a (run,level) pair. Consider the quantized 
DCT coeffi cients shown in Figure 4.26.

After zig-zag scanning in accordance with Figure 4.25, the one-dimensional 
array is shown in Figure 4.27.

The resulting run-coeffi cient pairs are as shown in Figure 4.28 with all of the 
remaining coeffi cients being zero.

Each run–coeffi cient pair is not equally likely and so a saving in the number of 
bits required to transmit the information occurs if the run–coeffi cient pairs are en-
coded using a Huffman code. A special Huffman code word is used to indicate that 
the last nonzero coeffi cient in a block has been transmitted and is called the end of 
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Figure 4.25 Zig-zag scan order of block of quantized transform coeffi cients.
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block (EOB) code word. Because the EOB code word is sent with every transmitted 
block, it occurs quite commonly and so is able to be represented by a short Huffman 
code word. For the (run,level) pairs given above, the transmitted code words would 
be as given in Figure 4.29.

The Huffman coding tables for the set of possible (run,level) pairs have been 
developed by standards bodies and are based on the statistics of typical sequences 
of video material.

4.5. MOTION-COMPENSATED DCT ENCODERS 
AND DECODERS

While we have so far only considered the application of the DCT to original pic-
tures, it can also be used to code the prediction difference after motion-compensated 

Code word(0, +38), Code word(1, -5), Code word(0, +7), Code word(0, +1), Code word(0, +4),

Code word(0, -2), Code word(1, +2), Code word(0, +2), Code word(0, -2), Code word(0, -1),

Code word(0, -2), Code word(0, +1), Code word(3, +1), Code word(0, +1), Code word(5, -1),

Code wordEOB.

Figure 4.29 Huffman code words used to represent the quantized DCT coeffi cients of Figure 4.26.

+38, 0, –5, +7, +1, +4, –2, 0, +2, +2, –2, –1, –2, +1, 0, 0, 0, +1, +1, 0, 0, 0, 0, 0, –1, 0, 0, 

0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 

0, 0, 0 

Figure 4.27 Coeffi cients for Figure 4.26 after zig-zag scanning.
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(0, +1) (3, +1) (0, +1) (5, –1) 

Figure 4.28 Coeffi cients of Figure 4.27 after coding into (run,coeffi cient) pairs.
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Figure 4.26 Block of quantized DCT coeffi cients.



prediction. Figure 4.30 shows the block diagram of a motion-compensated DCT 
encoder. The video input has the motion-compensated prediction subtracted from it. 
The motion-compensated prediction difference is then processed with a two-dimen-
sional DCT prior to quantization. Finally, the quantized DCT coeffi cients together 
with the relevant motion vectors are entropy coded and transmitted. The feedback 
loop of the encoder is equivalent to a decoder and consists of an inverse quantizer9 
followed by an inverse two-dimensional DCT. This produces a reconstruction of the 
motion-compensated prediction difference. The motion-compensated prediction is 
then added to the reconstruction of the motion-compensation prediction difference 
to form the reconstructed picture, which is stored in a frame store for use in the pre-
diction of a subsequent picture.

The corresponding decoder is shown in Figure 4.31. Apart from the initial en-
tropy decoding stage to produce the transform coeffi cients and motion vectors, this 
is identical to the feedback loop of the encoder.

Motion-compensated DCT encoders and decoders are the key coding tools of 
the MPEG-2 video compression standard that is used for digital television broadcast-
ing. Refi nements and improvements introduced during the standardization process 
signifi cantly enhance the performance of the basic architecture. We will consider 
this topic in considerable detail in Chapter 6.

9However, remember that quantization is a lossy process and so cannot be perfectly reversed.
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Figure 4.30 Motion-compensated discrete cosine transform encoder.
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