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An Experimental Example of the Dispersion of a
Radio Channel

MIMO channel sounder: Propsound
Tx and Rx Arrays: 50-element omni-directional dual-polarized array

5.25 GHz Carrier frequency
100 MHz bandwidth
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An experimental example: direction and delay
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Signal Model

Received signal vector:

Y(t) =) s(t:0,)+ \@W(t),

(=1
where

m Y (t) € CM2: output of the Rx array.

m W (t) € CM2: circularly symmetric spatially and temporally white
Gaussian noise with spectral height V.

m s(t;0,) € CM2: signal contributed by the fth path at the output of
the Rx array.
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Signal Model

The signal contribution of individual specular path:

S(t; 9@) i[Sl(t; 9@), e ooy SMy (t; 9@)]T
— eXp{jQﬂ'Vgt}CQ(ﬂg’g)Agcl(ﬂl’g)T’u,(t — Tg).

with
m 0, = Qy,Q00, 70,14, Ag| : parameter vector of the /th path;
n CL()=[cp1(0), cr2(Q)] € CM*2 k=12 : response of Array k
in direction €2;

Q11 Op19 : . .
m A, = | O" »2 € C?*? : polarization matrix ;
Qpo1 Qp22

mou(t) = [us(t),...,un (t)]' € CM1 : input signal vector.
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Signal Model

Direction

Q = e(p,0) = [cos(¢)sin(h), sin(¢) sin(0), cos(9)|* € S,
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The SAGE Algorithm

m Parameter vector:

0=10,..0;]|. Initialization

n=~0

6(0)
m Incomplete data: Y (¢) o(n)y

]
i For{=1,...,L
m Hidden data: .’,Ug(t) SAGE iteration step n<n+1
for updating 6,

O(n+1)

z(t) = 8(t: 00)+/ LW (¢),
(=1,...L

Convergence No
achieved ?

i Yes

OsAGE

(not the only choice)
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The SAGE Algorithm
a Expectation (E-) step:
(t) = Elze(t)[y(t),0(n)
= y(t) - ZL: s(t;6,(n))

0 =104

where 8(n) is the current estimate of 6.
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The SAGE Algorithm

m Objective function maximized in the M-step:

2(0;10) = £(0,)" D(Q24,Q10) " £(6,)

where

0 0y = [0, a0, T, V)

0 D(Qyy, Q1 y) = [Ca(R9)" Co(Qy))]
[01(91,£)H Cl(ﬂl,é)]§
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The SAGE Algorithm

m Objective function maximized in the M-step:

where
5 (Q2,0) X (70, ) 1,1 (Q10)* ]
5 f(éf) S 03,1(Q2E)X£(7'27V£)01 2(91 f)*
0372(92 ) X o(7e,ve)er,1(Q1,0)"
cy (92 E)Xﬁ(Tﬁa Ve)C1 2(Q1 z) i

0 X (7, Vg)_IS a M, x M; dim. matrix with entries

I
Xﬁ,mg,ml (TEJ Vﬁ) — Z eXp(_jZﬂ-yfti,mQ,ml)
1=1
TSC
. /u*(t — T0)Xe(t + timy.m, )dt,
0
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The SAGE Algorithm

m Conditions for D(£25,€2;) to be non-singular:
det(D(ﬂg, ﬂl)) 7é 0,

which holds, if and only if,
Cr1 () # Vi - Cr2(2k)

for some complex number v,k =1, 2.

0 A necessary and sufficient condition for D (€25, €2;) to be
always invertible is that the vectors ¢ 1(£2x) and
cr2(%), k = 1,2 are linearly independent for any €25 and €2;.

0 When D(€25,£21) is non-invertible, the four coefficients in the
polarization matrix A, cannot be estimated separately.

Graduate course: Propagation Channel Characterization, Tongji University 51 /70



The SAGE Algorithm

m Maximization (M-) step:

~/

~/ /

~Y ~Y NN
arg HL?X Z(¢1,£7 el,év ¢2,£7 (92,67 Tty Vys ZCg)

~/ ~/ /

~/ ~1 N7 .
arg H}/?X Z(gbl,éa el,éa ¢2,£7 (92,£7 Ty s Ve, SIJg)

1/ 1/

arg HélaX Z(qbl,ﬁa el,ﬁa ¢2,£7 (92,67 Ty s Vps CCg)
2,0

A N7 1/ 1/

~/ / A N A
arg max Z(Cbma ‘91,e7 P2, ez,ea Ty Uy Zp)

®2,¢
~1 ~11 N7 /2N /AN
arg nelax Z(¢1,€7 010, ¢2,ea (92,67 To > Vg T)
1,0

N/ ~1 N/ 1/ 1/

A

arg max Z(¢1,£7 91,67 ¢2,ea (92,67 o> Vg Tp).

1,0

(IPT.)"'D( 505 Y,e)_lf(ég)

oy = vec(Ay)
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Initialization

m Successive Interference Cancellation:

YO (t) = y(t) = ) s(t;60(0))

= Non-Coherent Maximum Likelihood (NC-ML) estimator for
initializing 7y, Uy, and €24 4.

m Coherent Maximum Likelihood (C-ML) estimator for initializing
Ql’g and &g.
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Initialization

m NC-ML estimate of delay 74

My

#(0) _argmax{y 3By

1=1 mo=1mi1=1

TSC
/ YO (t + b g, Ju™ (t — 74)dt

m NC-ML estimate of Doppler frequency v;:

D(0) = arg max{ %4‘ S‘

mo=1mi1=1

Y exp(—727Vet; iy my )

=1
2}

TSC
0

Graduate course: Propagation Channel Characterization, Tongji University
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Initialization

m NC-ML estimate of direction of arrival €2 ,:

My

. 2

5(0) = arg max{ E [\02 (Q24) yml‘ + |¢5 2(92,6)’9%)1‘
Qo

mi1=1

LRy ey (2l (2 z)yn?lHCIélz(ﬂzz)éz,l(ﬂu)}] }

m C-ML Estimate of direction of departure €2, ;:

A

Ql’g(O) — arg rgax{z(ﬂg g(O), ﬂLg, 7A'g(0), ﬁg(O), ?)g) }
1,0

m C-ML Estimate of the complex polarization vector oy

A
AN

éy(0) = (IPT.e) "D (£25,4(0), 21.4(0)) "' £(6,(0))

Graduate course: Propagation Channel Characterization, Tongji University 55 / 70



W P+ 5

= TONGIJI UNIVERSITY

Experimental Investigations

Characteristics of the measurement setup:

MIMO channel sounder: Propsound

Tx Array: 3x8 omni-directional dual-polarized array (M;=54),
Rx Array: 4x4 planar dual-polarized array (M,=32),

2.45 GHz Carrier frequency and 100 MHz bandwidth

Tx Array Rx Array
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Experimental Investigations

Investigated propagation environment:

Coelevation of Arrival [°]

0
Azimuth of Arrival [?]

Surrounding of the Tx

Coelevation of Departure [°]

150 100 50 0 -50 -100 -150 ‘ i
Azimuth of Departure [°] T T T
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Experimental Investigations (NLOS)

Estimated Directions of Arrival (DoAs) Reconstructed Paths

Coelevation [°]

Coelevation [°]

i : Pl ; el v e T X
150 100 50 0 -50 -100 -150 N—
Azimuth [°] 10 m. Y
i \NS2
T ‘ b2 1 i S1
[ . [ Sl 7 —h D
0 82 164 246 329 ‘ ' ‘

Relative delay [ns]
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Experimental Investigations (NLOS)

Estimated Directions of Arrival (DoAs)  Reconstructed Path 21

Coelevation [°]

Coelevation [°]

e $ " f b " ~
150 100 50 0 -50 -100 -150 N0
Azimuth [°] % 10 m. Y
hie S2
T ‘ b2 1 i S1 )
L ! Ro=r=———= N
0 82 164 246 329 % =¥ i 1 L

Relative delay [ns]
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Experimental Investigations (NLOS)

Estimated Directions of Arrival (DoAs)  Reconstructed Path 24

Coelevation [°]

Coelevation [°]

150 100 50 0 -50 -100 -150 e Iz =0
Azimuth [°] % 10 m. 5
e s2
. I = 781 :
I . N =T == TR0
0 82 164 246 329 & — E— : :

Relative delay [ns]
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Experimental Investigations (NLOS)

Estimated polarization:

Coelevation [°]

Azimuth [°]

0 82 164 246 329
Relative delay [ns]

Coelevation [°]
=
o © ©
o a1 o
T T T
S
=
N
< H%
i i

105~ N

110 \ \ \
40 30 20 10

o+

-10 -20 -30 -40 -50
Azimuth [°]

. o . o ) T
m Blue ellipses : polarization ellipses calculated using [a41,1 Gg2,1]

i i i i . N N T
m Red ellipses : polarization ellipses calculated using |a412 @da22] -
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Experimental investigations (NLOS)

Scatter plot of the estimated cross-polarization discrimination (XPD) of
the individual paths:

30

‘ 7,E (G1)
25¢ 5E 3,E
4E 7
20 6.E. VE|
©l @) 257TF 21« | @2
16T 18,F 12,F
72571 in dBdIO’ ’ 1X1;FR 14.F~
13T = "lo,FR
, : , ) 8F 19
5 17,7 «| ©
45,7 23, TW |
0 19(TFR ~ 20,FF
y 21, T
-5 A10.T 22,S “24,SF
Yo s 0 5 10 15 20 25
f&g in dB

. . . 2 . . . 2
B Ty = 046,1,1/046,2,1‘ and Tp2 = 046,2,2/046,1,2‘
m The symbols denote the types of scatterers identified along the
paths: facade (F), roof (R), edge (E) of buildings as well as tree

(T), sculpture (S), and wall (W).
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Experimental investigations (NLOS)

XPDs versus the interaction type:

Group || Interaction type/scatterers XPDs in dB

along the propagation path o1 T2

1 Diffraction around the roof 115,28] | [16, 30]
edge of B3

2a Reflection/scattering by |—10,17] | [—6, 16]
at least one tree

2b Reflection /scattering only 5,22] | [—6, 16]
by man-made structures
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Experimental investigations (LOS)

Directions of incidence (top) and directions of departure (bottom):

85

Coelevation [°]

105

110 - - = — -
50 40 30 20 10 0 -10 -20 -30 -40

Coelevation [°]

150 100 50 0 —5 -100 -150
Azimuth [°]
N 2@ 0
|

0 42 84 126 168
Relative delay [ns]

Graduate course: Propagation Channel Characterization, Tongji University 64 / 70



W P, F

=/ TONGII UNIVERSITY

Experimental investigations (LOS)

Estimated polarization:

Coelevation [°]

0 42 84 126 168

Coelevation [°]

50 40 30 20 10 0 -10 -20 -30 -40
Azimuth [°]
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Experimental investigations (LOS)

Reconstructed one-bounce (left) and two-bounce (right) propagation
paths:
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Experimental investigations (LOS)

Scatter plot of the estimated cross-polarization discrimination (XPD) of
the individual paths:

35' o o . ' L o o ' o
()X |
DB b DR
6,Ex3E
20F —
<228 24FF
Ple 51 76 20,GF
12,T 177 18I§ x
10 | A5, T x X | ‘
13,7 23,1
| <4TEg T
5t X5,T X 198
LT 16720 xoT |
. , , 14S (b))
=20 -10 0 10 20 30

X

The symbols denote the types of scatterers identified along the paths:
facade (F), roof (R), edge (E) of buildings as well as tree (T), sculpture
(S), ground (G) and wall (W).
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Experimental investigations (LOS)

XPDs versus the interaction type:

Group

Interaction type along the
propagation path

XPDs in dB

Te1 )

LOS and diffraction by the
roof edge of B3

9,17 | [21, 33]

23

Reflection/scattering by at
least one tree

(—18, 24][ [2, 15]

2b

Reflection/scattering only by
man-made structures

10,28] | [0, 17]
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Experimental investigations (LOS)

Scatter plot of the estimated singular values of the individual paths:

0n D o
ol 23X po1q.d8 KT e

197 pox A9
Ye in dB 4 -&5413><17>g§219><4 """""""""""
6L o op X120
%0 15 -10 5 0 5

u /S/E — éﬁ,min/éﬁ,max:
0 $o.min: Minimum of the estimated singular values of A,
0 <, maX' maximum of the estimated singular values of A,

A

B P =G in + S max: the estimated total path gain
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Conclusions

m A SAGE algorithm is derived for estimation of path parameters:
directions of departure, directions of arrival, propagation delay,
Doppler frequency, and polarization matrix.

m A detailed insight into the propagation mechanisms is obtained by
exploring the polarization characteristics of individual propagation
path:

O Identify the type of scatterers and interactions;

0 Relate the polarization characteristics of the paths to the
Interaction types.

m This insight is of paramount importance
0 For the design of realistic stochastic models of the propagation
channel for MIMO system applications;

0 To enhance the prediction accuracy of deterministic models for
field prediction.
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