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Lecture 5

Parametric estimation for the signal

contributions of slightly distributed

scatterers
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Multipath Propagation Environment
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■ Dispersion dimensions : delay, direction of departure (DoD),
direction of arrival (DoA), polarizations and Doppler frequency

■ Dispersion parameters of a propagation path:
• center of gravity and spread, one pair per dimension
• parameter characterizing dependence between the dimensions



An Example of Dispersion of Individual Path
Components

Graduate course: Propagation Channel Characterization, Tongji University 3 / 31

An estimated power spectrum with respect to azimuth of departure
(AoD) and azimuth of arrival (AoA) using measurement data
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■ Correlator outputs of the sounder at a specific delay are considered.
■ Bartlett beamformer is used to estimate the power spectrum.



Motivation
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In the scenario where individual path components are dispersive,
Specular-Scatterer (SS) model-based parameter estimators return
estimates with heavy-tail pdfs [Bengtsson & Völcker 2001].

Simulated pdf of the azimuth of arrival estimates using SS-ML estimator:
Simulation setting:

■ A single dispersed-path-component scenario
■ φ : uniform distributed within [−3◦,+3◦]
■ φ̄ = 0◦

■ SNR = 40 dB
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Effective Model for Individual Path Components
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The received signal in a scenario with one dispersed path component
can be modeled as

y(t) = h(t)s(t) +w(t),

In the case where azimuth of arrival is considered,
■ h(t) : time-varying complex weight described by

h(t) =
L∑

ℓ=1

αℓ(t)c(φ̄+ φ̃ℓ),

with
◆ αℓ(t) : complex weight of the ℓth individual sub-path;
◆ φ̄ : nominal azimuth of arrival of the path component;
◆ φ̃ℓ : azimuth deviation from φ̄ of the ℓth individual sub-path.

■ s(t) : complex envelope of the transmitted signal.



Generalized Array Manifold (GAM) Model
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First-order Taylor series approximation of c(φ̄+ φ̃ℓ) around φ̄:

c(φ̄+ φ̃ℓ)≈ c(φ̄)+φ̃ℓc
′(φ̄), when φ̃ℓ is small,

Approximation of the received signal:

y(t)≈
L∑

ℓ=1

αℓ(t)[c(φ̄)+φ̃ℓc
′(φ̄)] +w(t),

= α(t)c(φ̄) + β(t)c′(φ̄) +w(t), t = t1, . . . , tN ,

where α(t)
.
=

L∑
ℓ=1

αℓ(t), β(t)
.
=

L∑
ℓ=1

αℓ(t)φ̃ℓ.



Generalized Array Manifold (GAM) Model
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Further assumption:

α(t) and β(t) are zero-mean uncorrelated circularly-symmetric WSS
Gaussian processes with autocorrelation functions

Rα(τ) =
L∑

ℓ=1

Rαℓ
(τ) and Rβ(τ) = σ2

φ̃
Rα(τ).

In particular,

σ2
φ̃
= σ2

β/σ
2
α,

where σφ̃ is called azimuth spread, σ2
β = Rβ(0) and σ2

α = Rα(0).



Simulation Study
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Derived estimators using the GAM model:
■ stochastic and deterministic ML (SML and DML) estimators,
■ orthonormal-MUSIC (OMUSIC) estimator: an extension of the

standard MUSIC [Schmidt, 1986].

Root mean square estimation error (RMSEE) for the nominal azimuth of
arrival:

Simulation settings:
• D = 1
• L = 50
• φ̄ = 110o

• σφ̃ = 3◦

• 50 realizations
• 8-element ULA
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When Direction of Arrival is Considered
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Received signal in a single-SDS scenario:

y(t)=h(t)·s(t)+w(t)

with

h(t) =
L∑

ℓ=1

aℓ(t)c(Ωℓ),

where
■ aℓ(t) : complex weight for the ℓth individual path;

■ Ωℓ=e(φℓ, θℓ) is a unit vector characterizing direction with azimuth
φℓ and elevation θℓ.

■ φℓ = φ̄+ φ̃ℓ, and θℓ = θ̄ + θ̃ℓ.
■ (̄·): nominal value of the argument;

■ (̃·): deviation from the nominal value of the argument.



Generalized Array Manifold (GAM) model
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First-order Taylor series expansion of c(Ωℓ) around nominal DoA Ω̄:

c(Ωℓ)≈ c(Ω̄)+φ̃ℓc
′

φ(Ω̄)+θ̃ℓc
′

θ(Ω̄),

where

c
′

φ(Ω) = 1
sin(θ)

· ∂c(Ω)
∂φ

, and c
′

θ(Ω) = ∂c(Ω)
∂θ

.

Approximation of the received signal:

y(t) ≈
L∑

ℓ=1

aℓ(t)
[
c(Ω̄) + φ̃ℓc

′

φ(Ω̄) + θ̃ℓc
′

θ(Ω̄)
]
+w(t),

=α(t)c(Ω̄) + βφ(t)c
′

φ(Ω̄) + βθ(t)c
′

θ(Ω̄) +w(t), t = t1, . . . , tN ,

where

α(t)
.
=

L∑

ℓ=1

aℓ(t), βφ(t)
.
=

L∑

ℓ=1

aℓ(t)φ̃ℓ, βθ(t)
.
=

L∑

ℓ=1

aℓ(t)θ̃ℓ.



Generalized Array Manifold model (Cont.)
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Written in matrix notation:

y(t) =F (φ̄)ξ(t) +w(t), t = t1, . . . , tN ,

where

F (Ω̄) = [c(Ω̄), c
′

φ(Ω̄), c
′

θ(Ω̄)], and ξ(t) = [α(t), βφ(t), βθ(t)]
T.

Received signal in a multiple-SDS scenario:

y(t) =
D∑

d=1

F (Ω̄d)ξd(t) +w(t), t = t1, . . . , tN ,

where

F (Ω̄d) = [c(Ω̄d), c
′

φ(Ω̄d), c
′

θ(Ω̄d)], ξd(t) = [αd(t), βφ,d(t), βθ,d(t)]
T.



Generalized Array Manifold model (Cont.)
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Realistic assumption:

α(t), βφ(t) and βθ(t) are complex circularly-symmetric zero-mean WSS
processes with autocorrelation functions

Rα(τ)=
L∑

ℓ=1

Raℓ(τ), Rβφ
(τ)=σ2

φ̃
Rα(τ), and Rβθ

(τ)=σ2
θ̃
Rα(τ)

and cross-correlation functions

Rαβθ
(τ)=Rαβφ

(τ)=0, Rβφβθ
(τ)=σφ̃σθ̃ρφ̃θ̃Rα(τ).

In particular,

σ2
φ̃
=

σ2
βφ

σ2
α
, σ2

θ̃
=

σ2
βθ

σ2
α
, and ρφ̃θ̃ =

Rβφβθ
(0)

σ
φ̃
σ
θ̃
σ2
α
,

where σ2
(·) = R(·)(0).



The SAGE algorithm
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Unknown parameter vector in a multiple-SDS scenario:

θ
.
= [σ2

w, φ̄d, θ̄d, αd(t),βφ,d(t), βθ,d(t);

d = 1, . . . , D, t = t1, . . . , tN ].

A natural subset of unknown parameters:

θd
.
= [σ2

w, φ̄d, θ̄d, αd(t), βφ,d(t), βθ,d(t), t = t1, . . . , tN ].

Incomplete data (received signal):

y(t) =
D∑

d=1

F (Ω̄d)ξd(t) +w(t), t = t1, . . . , tN .

Admissible hidden data:

zd(t) = αd(t)c(Ω̄d) + βφ,d(t)c
′

φ(Ω̄d) + βθ,d(t)c
′

θ(Ω̄d) +w(t).



The SAGE algorithm
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Flow graph:Flow graph:
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The SAGE algorithm
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E-step:

ẑ
(n)
d (t) = E[zd(t)|y(t), θ̂

(n)
].

Successive interference cancellation:

ẑ
(n)
d (t) = y(t)−

D∑

d′=1,d′ 6=d

F ( ˆ̄Ω
(n)
d′ )ξ̂

(n)

d′ (t),

where (̂·)
(n)

is the estimate of the argument parameter in the nth
iteration.



The SAGE algorithm
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Objective function maximized in the M-step:

Z(θ̄d; ẑ
(n)
d )

.
= tr[Π

F

(
Ω̄d

)Σ̂
z
(n−1)
d

z
(n−1)
d

]

where

■ tr(·) denotes the trace operation.

■ ΠF (Ω̄d)=F (Ω̄d)F (Ω̄d)
†.

■ F (Ω̄d)
† .
=
[
F (Ω̄d)

HF (Ω̄d)
]−1

F (Ω̄d)
H.

■ Σ̂
z
(n−1)
d

z
(n−1)
d

= 1
N

tN∑
t=t1

ẑ
(n−1)
d (t)

(
ẑ
(n−1)
d (t)

)H
.



The SAGE algorithm
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Maximization (M-) step:

ˆ̄φ
(n)
d = argmax

φ̄d

{tr[Π
F

(
e(φ̄d,

ˆ̄θ
(n−1)
d

)
)Σ̂

z
(n−1)
d

z
(n−1)
d

]},

ˆ̄θ
(n)
d = argmax

θ̄d

{tr[Π
F

(
e(φ̄

(n)
d

,θ̄d)
)Σ̂

z
(n−1)
d

z
(n−1)
d

]}.

ξ̂
(n)

d (t) = F ( ˆ̄Ω
(n)
d )†ẑ

(n−1)
d (t), t = t1, . . . , tN ,

(σ̂2
w)

(n) = 1
NM

tr[Π⊥

F ( ˆ̄Ω
(n)
d

)
Σ̂

z
(n−1)
d

z
(n−1)
d

],

where
■ Π⊥

F ( ˆ̄Ω
(n)
d

)
= I − Π

F ( ˆ̄Ω
(n)
d

)
.



Direction Spread Estimation
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GAM model-based estimators for azimuth-spread (AS), elevation-spread
(ES) and azimuth-elevation correlation coefficient (AECC):

σ̂φ̃d
=

√√√√ σ̂2
βφ,d

σ̂2
αd

, σ̂θ̃d
=

√√√√ σ̂2
βθ,d

σ̂2
αd

, and ρ̂φ̃θ̃d =
R̂βφ,dβθ,d

(0)

σ̂φ̃d
σ̂θ̃d

σ̂2
αd

where

■ R̂βφ,dβθ,d
(0) = 1

N

∑tN
t=t1

β̂φ,d(t)
∗β̂θ,d(t)

■ σ̂2
α = 1

N

∑tN
t=t1

|α̂(t)− < α̂(t) > |2, with < α̂(t) >= 1
N

tN∑
t=t1

α̂(t).

■ σ̂2
βφ,d

and σ̂2
βθ,d

are calculated similarly to σ̂2
α.



Simulation Studies
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Estimation of the parameter φ̄1, θ̄1, σφ̃1
, σθ̃1

, ρφ̃θ̃1
Example with simulation settings:

■ single SDS
■ L = 100
■ φ̄1 = 110o

■ θ̄1 = 110o

■ σφ̃1
= 1o

■ σθ̃1
= 1o

■ ρφ̃θ̃1 = −0.5
■ N = 20
■ 50 dB output SNR
■ 6× 6 uniform planar array 106 107 108 109 110 111 112 113 114
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Simulation Studies
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RMSEE for the nominal azimuth:
Simulation settings:

■ single SDS
■ L = 100
■ φ̄1 = 110o

■ θ̄1 = 110o

■ σφ̃1
= 7o

■ σθ̃1
= 7o

■ ρφ̃θ̃1 = 0.5
■ N = 20
■ 6× 6 uniform planar array
■ 100 simulation runs

0 5 10 15 20 25 30
10

−3

10
−2

10
−1

10
0

R
M

S
E

E
(φ̄

)
in

[o
]

Output SNR [dB]

SS-MLE
GAM-MLE
Spread-ESPRIT



Simulation Studies
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RMSEE for the nominal azimuth:

Simulation settings:

• two SDSs:
L = 50,

φ̄1 = 110
o
,

φ̄2 = 110
o
−∆φ̄,

θ̄1 = θ̄2 = 110
o
,

∆φ̄ = 5
◦

, . . . , 70
◦

,

σφ̃1
=σφ̃2

= 5
◦

.

• Output SNR:
20 dB for SDS1,
29 dB for SDS2.

• N = 20

• 6 × 6 uniform
planar array

• 200 sim. runs
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Azimuth Spread Estimation
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Azimuth spread estimator is found to be biased, due to the mismatch
between the effective model and the GAM model.
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Azimuth Spread Estimation
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We proposed an Array Size Adaptation (ASA) technique:

■ It adjusts the array size, e.g. the number of antennas in uniform
linear arrays, in such a way that the model mismatch is reduced.

■ It can be combined with the SAGE algorithm for estimation of the
parameters of individual path components.



Gerschgorin Radii
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■ Calculation of the Gerschgorin Radii [Wu, Yan & Chen 1995]:

◆ Partition the covariance matrix: Σyy =

[
Σ1 ϕ

ϕH ε

]
,

where Σ1 ∈ C(M−1)×(M−1),ϕ ∈ C(M−1)×1 and ε ∈ C.
◆ Perform eigenvalue decomposition of Σ1:

Σ1 = UΛUH with U = [e1, . . . ,eM−1].
◆ Calculate the Gerschgorin Radii (GR):

rm = |eH
mϕ|, m = 1, . . . ,M − 1.

■ Properties of the GR:
Asymptotically,

◆ GR associated with noise eigenvectors equal zero.
◆ GR associated with signal eigenvectors are nonzero and

independent of noise.



Array Size Adaptation Technique
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Compute the ratio η and ηGAM of the largest to the 2nd largest GR obtained

using covariance matrix Σyy and ΣyGAMyGAM
:
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■ η and ηGAM depend on array size M .

■ Above a certain threshold value ηth, η and ηGAM are close.

Close agreement of η and ηGAM is an indicator that yGAM(t) provides a close

approximation to y(t).



Array Size Adaptation Technique (Cont.)
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The ASA technique for reducing the model mismatch:

Adjust M such that the ratio between the largest GR and
the next largest GR calculated using Σyy is greater than
or equal to ηth.

Remarks:

■ This technique can selectively adjust the array size for individual
SDSs.

■ It can be extended to arrays with arbitrary layout.



Simulation Study
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Average Estimation Error (AEE) and RMSEE of the azimuth spread:
Simulation settings

■ φ̄ = 20◦

■ Input SNR 10 dB
■ M -elements ULA
■ 50 observation samples
■ 200 simulation runs
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Experimental Investigation
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Characteristics of the measurement set-up:

• TDM-MIMO channel sounder, PROPSound
• 3× 8 dual-polarized ODA Tx array (M1=54), (a)
• 4× 4 dual-polarized planar Rx array (M2=32), (b)
• 100MHz Signal bandwidth

(a) (b)



Experimental Investigation
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Estimated slightly distributed scatterers:
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Experimental Investigation
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Estimated slightly distributed scatterers versus the estimated specular
paths:

Estimated Estimated

Dispersive path Specular paths

1 1 to 7

3 8, 9, 11, 14

4 10, 13, 15, 16, 18

5 22, 24

6 25



Summary and Conclusions
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■ The GAM model-based estimators outperform the estimators
derived using the specular-scatterer model in term of lower mean
square estimator error.

■ The array size adaptation (ASA) technique can be used to improve
the performance of azimuth spread estimation.

■ Experimental investigations showed that the SAGE algorithm
derived using the generalized array manifold model can be used for
estimation of parameter of slightly dispersed path components.
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