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Motivation: Specular-to-Diffuse Transition
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The specular-to-diffuse transition was noticed by Suzuki (1977) in an
urban scenario and by Pamp&Kunisch (2002) in an indoor scenario.

Spatially averaged
power delay profiles
obtained from a
line-of-sight scenario
(left) and a
non-line-of-sight
scenario (right)
[Pamp&Kunish2002].

■ Not much attention has been paid to this transition effect.
■ “Specular” and “diffuse” components are modeled as separate

effects.
■ The specular to diffuse transition appears to be “signature”-like

pattern that is of importance for e.g. indoor positioning.



Philosophy, Goals, and Method
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Philosophy:

■ Model the environment and the propagation mechanisms instead of
the response of the environment

Goals:

■ The obtained response should exhibit an exponential power decay.
■ A joint description of specular and diffuse signal components.
■ Relation between the features of power delay profile and the

propagation environment.

Method:

■ Model a cluttered environment
■ Model the propagation mechanisms in the environment
■ Compute the response



Model of the Propagation Environment
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A “typical” propagation environment:
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(The propagation environment is static.)
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■ We model scatterers as the vertices of a signal flow-graph.
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A “typical” propagation environment:

b
S3

b

S4

b
S1

b
S6

b

Tx

b Rx

(The propagation environment is static.)

■ We model scatterers as the vertices of a signal flow-graph.
■ The wave propagation between scatterers is modelled by the edges

of the graph.



Modeling Propagation Using Graphs (1)
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Notations:
We consider a simple directed graph G = (V, E).
Vertex set V: The transmitters, receivers, and scatterers are

represented by vertices in the set: V = Vt ∪ Vr ∪ Vs.

Edge set E: Wave propagation between the vertices is modeled by
edges in E . Iff wave propagation from v ∈ V to v′ ∈ V is possible,
then (v, v′) ∈ E .

A propagation graph with
four transmitters (Tx),
three receivers (Rx),
and six scatterers (S).
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Modeling Propagation Using Graphs (2)
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Signal propagation in the graph:
■ The sum of signals impinging via the incoming edges of a scatterer

are re-emitted via the outgoing edges.
■ An edge (v, v′) ∈ E transfers the signal from v to v′ according to its

transfer function

A(v,v′)(f) =

{

g(v,v′) · exp(−j2πτ(v,v′)f), (v, v′) ∈ E

0 otherwise.

τ(v,v′) =
|rv − rv′|

c
, |g(v,v′)|

2 =

(
1

1 + |rv − rv′|

)2

· |g|2

outdegree(v)
,

where
◆ we have assigned a position vector rv ∈ R

3 to vertex v,
◆ |g| < 1 is a constant gain,
◆ outdegree(v) is the number of outgoing edges of vertex v, and
◆ c is the speed of light in vacuum.



Power Constraint
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Check that the output power (at the “output” of the outgoing edges) is
less than the power of the input signal Xv(f):

∑

e∈Ev

|geXv(f)|
2 < |Xv(f)|

2 ⇔
∑

e∈Ev

|ge|
2 < 1

where Ev is the set of outgoing edges of vertex v.

It suffices to consider the case where |Ev| = outdegree(v) ≥ 1. We
upper bound |ge|

2 as

|ge|
2 =

(
1

1 + |rv − rv′|

)2

· |g|2

outdegree(v)
≤ |g|2

outdegree(v)

Since |Ev| = outdegree(v) we obtain

∑

e∈Ev

|ge|
2 ≤

∑

e∈Ev

|g|2

outdegree(v)
= |Ev|

|g|2

outdegree(v)
= |g|2 < 1.



Response of a Propagation Graph (1)
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Relation between the input signal vector X(f) and the output signal
vector Y(f) in the Fourier domain:

Y(f) = H(f)X(f)

In the following we derive an expression for the transfer matrix H(f)

(Four slides of math will follow. Sorry!)



Response of a Propagation Graph (2)
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Define the state vector:

C(f) =





X(f)
Y(f)
Z(f)





where Z(f) is the vector of signals observed at the scatterers.

Decompose C(f) according to the number of edges k the signals have
traversed:

C(f) =
∞∑

k=0

Ck(f) =
∞∑

k=0





Xk(f)
Yk(f)
Zk(f)





Obviously Xk(f) =

{

X(f), k = 0

0, otherwise.



Response of a Propagation Graph (3)
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We have the following recursive equation

C0(f) = [X(f)t,0t,0t]t

Ck+1(f) = A(f)Ck(f), k ≥ 0

where A(f) is the weighted adjacency matrix of the graph:

[A(f)]nn′ =

{

A(vn,vn′ )(f), (vn, vn′) ∈ E

0, otherwise

By appropriate vertex indexing:

A(f) =





0 0 0

D(f) 0 R(f)
T(f) 0 B(f)





D(f) : transmitters → receivers
R(f) : scatterers → receivers
T(f) : transmitters → scatterers
B(f) : scatterers → scatterers.



Response of a Propagation Graph (4)
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Obviously
Y1(f) = D(f)X(f).

By inspection of the series A2(f),A3(f), . . . we see

A
k(f) =





0 0 0

R(f)Bk−2(f)T(f) 0 R(f)Bk−1(f)
B

k−1(f)T(f) 0 B
k(f)



 , k ≥ 2.

Thus
Yk(f) = R(f)Bk−2(f)T(f)X(f), k ≥ 2



Response of a Propagation Graph (5)
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Summing up signal contributions we obtain:

Y(f) = D(f)X(f) +
∞∑

k=2

R(f)Bk−2(f)T(f)X(f)

=

[

D(f) +
∞∑

k′=0

R(f)Bk′(f)T(f)

]

X(f)

=
[
D(f) +R(f)(I−B(f))−1

T(f)
]

︸ ︷︷ ︸

H(f)

X(f).

The sum converges due to the power constraint (we omit the proof here).



Transfer Matrix of a Propagation Graph
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The relation between the input vector X(f) and the output vector Y(f)
in the Fourier domain reads

Y(f) = H(f)X(f),

where the transfer matrix H(f) is of the form [Pedersen&Fleury 2007]

H(f) = D(f) +R(f)(I+B(f) +B(f)2 +B(f)3 + . . . )T(f)

= D(f) +R(f)(I−B(f))−1
T(f).

X(f) Y(f)
∑ ∑

∑

Vt Vr

Vs

D(f)

T
(f) R

(f
)

B(f)



How to Generate a Propagation Graph
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A propagation graph can be obtained in different ways:
■ From a deterministic environment (e.g. by ray-tracing).
■ Generate a random environment (scatter locations and weights) and

calculate visibilities.
■ By randomly generating the vertices and the edges of the graph.

We focus on the third option.

Example:
1. Assume fixed rTx and rRx.
2. Generate the scatterer positions according to a point process in a

region R ⊂ R
3.

3. Generate the edges (v, v′) ∈ V2 from a Bernoulli experiment with
edge probability P(v,v′)



Stochastic Propagation Graphs
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1. Fix the coordinates of the transmitters and receivers.
2. Draw the positions of N of scatterers according to a uniform

distribution defined a solid volume R.
3. Generate edges according to the edge occurrence probability:

Pr((v, v′) ∈ E) =







Pdir if (v, v′) = (Tx,Rx)

0 if v = v′

0 if v = Rx

0 if v′ = Tx

Pvis otherwise

4. Compute H(fmin), H(fmin +∆f), . . . ,H(fmax).
5. Compute the channel impulse responses using the inverse discrete

Fourier transform applying a Hanning window.



Simulation Scenario
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We consider a single-input single-output system and simulate:
■ H(f) and its inverse Fourier transform h(t) and
■ the indirect term Q(f) , R(f)(I−B(f))−1

T(f) and its inverse
Fourier transform q(t).

Parameters Values
R [0, 5]× [0, 10]× [0, 3.5]m3

rTx [1.8, 2.0, 0.5]Tm
rRx [1.0, 4.0, 1.0]Tm
Number of scatterers 20
g 0.8
Pvis 0.8
Pdir 1
∆f 0.5GHz



An Example Transfer Function
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Transfer function (thick line) and indirect term (thin line).

Clustering effect is not caused by
geometrically clustering of
scatterers but an effect of the
structure of the graph.

�clusters�



Specular-to-Diffuse Transition
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An example of |h(t)|.

Specular-to-diffuse transition



Estimated Delay-Power Spectrum
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Delay-power spectrum estimate computed from 1000 realisations of
|h(t)| (thick line) and |q(t)| (thin line).
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Experimental Investigation (1)
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■ Carrier frequency: 5.25 GHz
■ Code length : 255 chips
■ Chip rate: 100 Mchip/s
■ Sampling frequency: 200 MHz
■ Laboratory environment

Tx Environment

Rx Environment



Experimental Investigation (2)
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Construct propagation graphs based on the environment:
Transfer function: H(f) = H1(f) +H2(f)
Channel response: h(t) = F−1H(f)
Graph 1:

Transmitter Receiver

Scatterer 1

Scatterer 2

Scatterers

Transmitter Receiver

H1(f)

H2(f)



Experimental Investigation (3)
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Construct propagation graphs based on the environment:
Transfer function: H(f) = H1(f) +H2(f)
Channel response: h(t) = F−1H(f)
Graph 2:

Transmitter Receiver

Scatterer 1

Scatterer 2

Scatterers

Transmitter Receiver

H1(f)

H2(f)



Experimental Investigation (4)
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Comparison of the power delay profiles obtained with graphs:

Power spectral height is calculated by averaging 500 Monte-Carlo runs.

Graph 1 Graph 2
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Discussions
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■ Propagation graphs can be used to generate propagation path
parameters for geometric based generic models.

■ The gain, delay, direction of departure and arrival of a path can be
generated.

■ Non-stationary channels can be modelled by including movement of
vertices and changing visibilities.

■ Multiple and transmitter and receiver vertices can be included to
accommodate multiuser and/or MIMO systems.

■ Frequency-dependent scatterers can be included (UWB models).



Graph Representation of Existing Models
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■ The Turin model: h(τ) =
∞∑

i=0

βiδ(τ − τi)

bTx b Rx

β0δ(τ − τ0)

βiδ(τ − τi)

...

■ The Saleh-Valenzuela model: h(t) =
∞∑

i=0

γi

∞∑

k=0

γikδ(τ − (τi + τik))

bTx b Rx

b
0

γ0δ
(τ −

τ0)

...

...

b
i

γiδ(τ − τi) γikδ(τ − τik)

...
b

i+ 1

γ
i+1δ(τ − τ

i+1)
... ...



Concluding Remarks
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■ A graph-based radio channel model was proposed.

■ The model is described in [Pedersen&Fleury 2006] and a closed form

expression for the transfer matrix is derived in [Pedersen&Fleury
2007].

■ As an effect of the recursive structure of the model, the obtained
impulse responses exhibit

◆ a transition from early specular to later diffuse contributions,
and

◆ an exponential power decay.

■ The propagation graph model can be easily extended to include
dispersion in directions of departure and arrival.
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