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Deterministic radio propagation 
modeling and ray tracing 

1)   Introduction to deterministic propagation modelling 

2)   Geometrical Theory of Propagation I - The ray concept – Reflection 
and transmission 

3)   Geometrical Theory of Propagation II - Diffraction, multipath 

4)   Ray Tracing I 

5)   Ray Tracing II – Diffuse scattering modelling 

6)   Deterministic channel modelling I 

7)   Deterministic channel modelling II – Examples 

8)   Project  - discussion 



Geometrical theory of propagation (I) 
 It is useful when propagation takes place in a region with concentrated 
obstacles. Obstacles are here represented as plane walls and rectilinear 
edges (canonical obstacles) 

wall edge 



Geometrical theory of propagation (II) 
 electromagnetic constants: 

 
   air             wall (generic medium) 

  

 

εo =
1

36π
 10−9  Farad /m ε   electric permittivity

µo = 4π 10−7  Henry /m µ = µo    magnetic permeability
σ = 0 σ  (if lossy)   electric conductivity

   εc = ε + σ
jω

= ε − j σ
ω

complex permittivity

n=1 n  εc
εo

refraction index

ηo = 120π Ω η  µ
εc

= µo

εc
intrinsic impedance



Geometrical theory of propagation (II) 

•  Geometrical theory of propagation is an extension of Geometrical Optics, 
(GO) but is not limited to optical frequencies 

•  Like GO, it corresponds to an asymptotic, high-frequency approximation of 
basic electromagnetic theory, and is based on the concept of ray 

•  Since GO does not account for diffraction, then diffraction is introduced 
through an extension called Geometrical Theory of Diffraction (GTD) 

•  The combination of GO and GTD, applied to radio wave propagation may 
be called Geometrical Theory of Propagation (GTP) 

•  GTP is the base of deterministic, ray-based  propagation models (ray-tracing 
etc.) 



Tx antenna in free space 

? 

Far field: ( r >> λ     r >> D , antenna’s dimension)  

Tx (Spherical wave) 
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Far field expressions 
 ( r >> λ     r >> D )  

Antenna’s radiation vector  
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Polarization vector 

The polarization vector defines the polarization of the field 
(and also of the antenna) 
 
It is strictly related to the radiation vector M 
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Wavefront 

r Tx 
Ex r,θ,ϕ( ) = E0x θ,ϕ( ) e

− jβr

r
=
E0x
r

e j arg E0 x( )−βr( )

A wavefront is a locus where the field has constant phase 

Therefore the wavefront is defined by: 

arg E0x( ) − βr = −ϕ

If r is large and arg(E0x) is limited we have 

arg E0x( ) − βr ≈ −βr = −ϕ   ⇒  r = ϕ
β  

Therefore the wavefront is a spherical surface in our case.  That’s why it’s 
called “spherical wave”. 

e.g: 



Spherical and plane waves 

Tx 

spherical wavefront 

Spherical wave 

 


E r,θ,ϕ( ) ≈


Eo θ,ϕ( ) e

− jβr

r
r = rîr

with  

 


Eo
' =

Eo θ,ϕ( )

r
k = β îr

In far field a spherical wave can be locally 
approximated with a  Plane wave 

 

E r,θ,ϕ( ) ≈


Eo
' e− j  kir

≈ plane wavefront	


k
e



Definition of Ray (1/2) 
 
•  Given a propagating wave, every curve that is everywhere perpendicular to 

the wavefront is called electromagnetic ray. A ray is the path of the 
wavefront. There is a mutual identification btw wave and ray 

•  Therefore we assume that the ray also has a field, the field of the wave at 
every point 

 



Definition of Ray (2/2) 
 
•  In free space, rays are rectilinear 

•  In presence of concentrated obstacles rays are piecewise-rectilinear and 
wavefronts can be of various kinds (see further on) 

•  In non-homogeneous media rays can be curved (not treated here) 

Ex.1 Sperical wave and 
rectilinear rays 

Ex.2 reflected spherical wave and 
piece-wise rectilinear rays 

1 Point 
source s0 s1



Poynting vector and intensity  

It can be shown that the Poynting vector always has the same direction as the ray. 
For a spherical wave this can be shown easily: 

S = E × H *
2

=
E

2

2η
îr

Therefore: 
e.m. power propagates along rays! 

radiation Power-Density or Intensity is defined as: 

S = S =
E 2

2η

Tx 
r = rîr



Tube of flux concept  and Power-density law 

Def: a Ray tube (tube of flux) is a closed surface 
whose lateral surface is formed by a set of rays and 
the bases are two wavefront sections 

By applying the Poynting’s theorem (energy conservation) to a ray tube having 
bases dΣ1, dΣ2 small enough to assume the field constant on them, and considering a 
lossless medium we have: 

 


S ⋅ n̂ dΣ

Σ
∫ =


S ⋅ n̂ dΣ

dΣ1

∫ +

S ⋅ n̂ dΣ

Σ
∫

=0  
  

+

S ⋅ n̂ dΣ

dΣ2

∫ =

= −

S1 ⋅dΣ1 +


S2 ⋅dΣ2 = 0   ⇒   S1 ⋅dΣ1 = S2 ⋅dΣ2 ⇒   S2

S1

= dΣ1

dΣ2

Power-density (or Intensity) law of Geometrical Optics: 
“Power-density is inversely proportional to the cross-section of the ray tube” 

dΣ2 

dΣ1 

Σ1 



Spreading Factor 

We can therefore define the spreading or divergence factor A: 

  The spreading factor accounts for the attenuation due to the enlarging of the ray- 
tube cross-section. 

  Power carried by a ray decreases even in lossless media because the power 
density spreads on an enlarging wavefront surface as the wave propagates.  

A =
S2
S1

=
E2
E1

= dΣ1
dΣ2



 
Using a reference distance ρo we have 

Re-writing the spherical wave  

ρ0 
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⎛
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Power density: 

Tx 

 
reference distance  

excess distance 

E R( ) = E0
e− jβR

R
= E0

e− jβρ0

ρ0

  ρ0

R
e− jβ R−ρ0( ) =

         E ρ0( ) ρ0

R
e− jβ R−ρ0( )=E ρ0( ) ρ0

ρ0 + s
e− jβ s( )

 
field: 

Spreading factor 

Since received power Pr is 
proportional to power density, 
that’s why Pr attenuates with 
the square of distance ! 



The generic, astigmatic wave 

C3 

( ) ( ) ( )
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, , dAA s
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There are 3 main reference cases: 

- Spherical wave: ρ1=ρ2 =ρ0     
 
 
- Cylindrical wave: ρ1= ∞ , ρ2 = ρ0     
 
- Plane wave: ρ1= ρ2 = ∞    A = 1 

s
A

0

0
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 If the mean is homogeneous ( rectilinear rays) [2] 
the generic wave’s divergence factor is:  

 
 
  
 - A : Divergence or Spreading factor 
 - ρ1, ρ2 : curvature radii 
 - C1C2 , C3C4 : wave caustics 

  

notice that, for powerconservation:

A =
dA0

dA
=

E
2

E0

2 =
E
E0

= 1
L

 L: Path Loss
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C4 

C2 

ρ 

ρ 
2 

0 

1 

s 
dA 

dA Tube of flux 

Reference 
wavefront 

γ 
δ 



 The divergence factor gives the field- (and thus power-) attenuation law along 
the ray. But since the field is a complex vector, we also have polarization. 

 The generic (astigmatic) wave in free space has the electric field: 

( ) ( ) ( ) ( ) 
1 2

 factor1 2 at reference
    point (s 0)

Pr

0 j s

PhaseField

opagation factor

E s E e
s s
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=
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Divergence  factor
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(Example: spherical wave) 

The generic wave: field 



Interaction mechanisms 

T Building wall 

R 

Diffuse scat. Vertex diffraction 

Edge diffraction 

θi 

θr=θi 
 



•  GTP is based on the couple:  (ray , 
field) 

•  The propagating field is computed as a 
set of rays 

GTP basics 

•  Given a ray departing from an antenna we must “follow” the ray and predict 
both its geometry and its field at every point until it reaches the receiver 

•  It is therefore necessary to predict what happens at both the trajectory and the 
field at each interaction with an obstacle 

•  To this end we rely on the two GTP basic principles 



   “Local field principle”   
   

•  The wave can be locally assumed plane (for the 
interaction coefficient computation) 

•  The field associated with the reflected/transmitted/
diffracted ray only depends on the electromagnetic and 
geometric properties of the obstacle in the vicinity of the 
interaction point 

GTP: basic principles 

S D 

P 

   “Fermat’s principle”   
   

•  The ray trajectory is always so as to minimize path 
 (or optical-path …) 

S D 

P 
NO 

S’ 



Ray Reflection and Transmission (1/2) 

• when a ray impinges on the plane surface the 
corresponding wave is reflected and 
transmitted, thus generating reflected and 
transmitted rays  

n1=1 

n2 
radial rays spring from the transmitting 
antenna  

• The incident ray trajectory is modified according to the Snell’s laws of 
reflection (transmission). The field amplitude / phase change at the 
interaction point according to proper Fresnel’s  reflection (transmission) 
coefficients  

θi θr 

source image 
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• TE polarization 

• TM polarization 

Reflection and Transmission Coefficients 
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Reflected ray 
 
 
 
 
 
 
 
Transmitted ray 

 direction: reflection law or Fermat’s principle 
 
 Field expression: 
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Field formulation 

 direction: Snell’s law or Fermat’s principle 
 
 Field expression: 

Tx 

Tx 

Fresnel’s coefficients 

θI	
 θR	


z 
x 

PR: reflection point 

ρ0 s 

θI	

z x 

θT	
 s 

ρ0 

Divergence 
factor 



Example: dielectric materials 
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Example: sea water 

Module of ΓTE and ΓTM Phase of ΓTE and ΓTM 



When conductivity exists, the following constant is  often used 





Material*   er  s (S/m)  e" @ 1 GHz 
 Lime stone wall  7.5  0.03  0.54 
 Dry marble  8.8   0.22   
 Brick wall  4.4  0.01  0.18 
 Cement   4 - 6   0.3 
 Clear glass  4 - 6   0.005 - 0.1 
 Metalized glass  5.0  2.5  45 
 Lake water  81  0.013  0.23 
 Sea Water 81  3.3  59 
 Dry soil   2.5  --  -- 
 Earth   7 - 30  0.001 - 0.03  0.02 - 0.54 

 
*  Common materials are not well defined mixtures and often contain water.  
“Effective” material properties depend on exact mixture, and on water content.  
These are approximate numbers taken from several sources. 

Example: material constants 

ε rc = ε r − j
σ
εoω

= ε r − jε
''


