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Geometrical theory of propagation (I)

It 1s useful when propagation takes place in a region with concentrated
obstacles. Obstacles are here represented as plane walls and rectilinear
edges (canonical obstacles)
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Geometrical theory of propagation (II)

electromagnetic constants:
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Geometrical theory of propagation (II)

» Geometrical theory of propagation is an extension of Geometrical Optics,
(GO) but 1s not limited to optical frequencies

» Like GO, it corresponds to an asymptotic, high-frequency approximation of
basic electromagnetic theory, and is based on the concept of ray

* Since GO does not account for diffraction, then diffraction is introduced
through an extension called Geometrical Theory of Diffraction (GTD)

» The combination of GO and GTD, applied to radio wave propagation may
be called Geometrical Theory of Propagation (GTP)

» TP i1s the base of deterministic, ray-based propagation models (ray-tracing
etc.)




Tx antenna 1n free space

Far field: (r>>A r>> D, antenna’s dimension)

(Spherical wave)
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Far field expressions
(r>A 1r>>D)
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Polarization vector
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The polarization vector defines the polarization of the field
(and also of the antenna)

It 1s strictly related to the radiation vector M
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Wavetront

A wavefront 1s a locus where the field has constant phase
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Therefore the wavefront 1s a spherical surface in our case. That’s why it’s
called “spherical wave”.




Spherical and plane waves

spherical wavefront

Spherical wave
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Definition of Ray (1/2)

* (Given a propagating wave, every curve that 1s everywhere perpendicular to
the wavefront is called electromagnetic ray. A ray is the path of the
wavefront. There 1s a mutual i1dentification btw wave and ray

« Therefore we assume that the ray also has a field, the field of the wave at
every point




Definition of Ray (2/2)

 In free space, rays are rectilinear

« In presence of concentrated obstacles rays are piecewise-rectilinear and
wavefronts can be of various kinds (see further on)

* In non-homogeneous media rays can be curved (not treated here)

Ex.1 Sperical wave and Ex.2 reflected spherical wave and
rectilinear rays piece-wise rectilinear rays

Rays are

normal to
wavefronts
Point

source
€ Wavefronts
expanding
from point
source




Poynting vector and intensity

It can be shown that the Poynting vector always has the same direction as the ray.
For a spherical wave this can be shown easily:

_ ExH* |E|l -
S = — ‘ | l

2 2N
Therefore:

€.m. power propagates along rays!




Tube of flux concept and Power-density law

Def: a Ray tube (tube of flux) is a closed surface
whose lateral surface is formed by a set of rays and
the bases are two wavefront sections

By applying the Poynting’s theorem (energy conservation) to a ray tube having
bases d%,, d%, small enough to assume the field constant on them, and considering a
lossless medium we have:
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Power-density (or Intensity) law of Geometrical Optics:
“Power-density is inversely proportional to the cross-section of the ray tube”




Spreading Factor

We can therefore define the spreading or divergence factor A:

The spreading factor accounts for the attenuation due to the enlarging of the ray-
tube cross-section.

Power carried by a ray decreases even in lossless media because the power
density spreads on an enlarging wavefront surface as the wave propagates.




Re-writing the spherical wave

Using a reference distance p, we have

reference distance
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The generic, astigmatic wave

If the mean is homogeneous (= rectilinear rays) [2]
the generic wave’s divergence factor is:

A(pl’pz’s):\/(pl+§1):€;2+s) [:@)

- A : Divergence or Spreading factor
wavefront - P4, Py : curvature radii
- C,C, , C,C, : wave caustics

Tube of flux

Reference

There are 3 main reference cases: notice that, for power conservation:
2
- Spherical wave: p,;=p,=p, & A=_P0_ A:J%: E_ziz\/z
F P1=P2=Po S dd |z E| VL
Po L: Path Loss

- Cylindrical wave: py=co, p,=pg =2 A=

p0+S

- Plane wave: p=p, == A=1




The generic wave: field

The divergence factor gives the field- (and thus power-) attenuation law along
the ray. But since the field is a complex vector, we also have polarization.
The generic (astigmatic) wave in free space has the electric field:
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(Example: spherical wave)
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Interaction mecha

Building wall




GTP basics

e GTP 1s based on the couple: (ray .

field)

» The propagating field is computed as a
set of rays

* Given a ray departing from an antenna we must “follow” the ray and predict
both its geometry and its field at every point until it reaches the receiver

« It is therefore necessary to predict what happens at both the trajectory and the
field at each interaction with an obstacle

* To this end we rely on the two GTP basic principles




GTP: basic principles
“Local field principle”

« The wave can be locally assumed plane (for the
interaction coefficient computation) S

 The field associated with the reflected/transmitted/ /
diffracted ray only depends on the electromagnetic and
geometric properties of the obstacle in the vicinity of the
interaction point

“Fermat’s principle”

» The ray trajectory is always so as to minimize path
(or optical-path ...)




Ray Reflection and Transmission (1/2)
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* The incident ray trajectory i1s modified according to the Snells laws of
reflection (transmission). The field amplitude / phase change at the
interaction point according to proper Fresnel’s reflection (transmission)

coefficients




Retlection and Transmission Coefficients

TE polarization
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Field formulation

Reflected ray

Py: reflection point

Transmitted ray

A

Tx

* direction: reflection law or Fermat’s principle

* Field expression:
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e direction: Snell’s law or Fe

* Field expression:
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Fresnel’s coefficients



Example: dielectric materials

E =
= =
c =
3 2
&= &=
o )
S 3
IS =
g E
@ z
0.1}
00 15 30 45 60 75 90 00 15 30 45 60 75 90
a a

TE Polarization TM Polarization




,EV, 7’ l eOl

10

0.9

08

0.7 —

06

5

04

03

02

01

0.0

Example: sea water
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Example: material constants

When conductivity exists, the following constant is often used

. O .

E.=E — | N
X0,

Material* e, s (S/m) e" @ 1 GHz
Lime stone wall 7.5 0.03 0.54
Dry marble 8.8 0.22
Brick wall 4.4 0.01 0.18
Cement 4-6 0.3
Clear glass 4-6 0.005-0.1
Metalized glass 5.0 2.5 45
Lake water 81 0.013 0.23
Sea Water 81 3.3 59
Dry soil 2.5 - -~
Earth 7-30 0.001-0.03 0.02-0.54

* Common materials are not well defined mixtures and often contain water.
“Effective” material properties depend on exact mixture, and on water content.
These are approximate numbers taken from several sources.




