3 Kalman filters

3.1 Scalar Kalman filter

3.1.1 Signal model

e System model
{Y(n)} is an unobservable sequence which is described by the following

state or system equation

Y(n)=hn)Y(n—1)+Z(n),n=1,2,.. (3.1)

Block Diagram Representation of (3)1

Y (n)
@ Unit o)
N T
h(n)
Initialization:

Y'(0) is a random variable whose expectatjon, = E[Y (0)] and variance

vy = Bl(Y(0) = py())?] are known.



Property of the driving process/noisgZ(n)}:
{Z(n)} is awhite noise with a possibly time-varying variance (non-stationary
white noise) :

- E[Z(n)] =0

— E[Z(n)Z(n+ k)] = 075(n)i(k)

Property of the feedback coefficien{g(n)}:
{h(n)} is a known deterministic sequence.

Remark: Provided{h(n)} and {¢%,(n)} are constant andZ(n)} is a

Gaussian random process, thén(n)} is an AR(1) process.

e Observation (or channel) model

The observable sequeng&n) is given by

X(n)=an)Y(n)+W(n) ,n=12.. (3.2)

Block diagram representation of (3.2)



Property of the weighting sequendg:(n)}:
{a(n)} is a known deterministic sequence.
Property of the noisg W (n)}:
{W(n)} is a non-stationary white noise:

- EW(n)]=0

— EWm)W(n+ k)] = oy (n)o(k)

e Additional "weak independence" assumptions

Y (0),{Z(n)}, and{WW (n)} are uncorrelated.

e Block diagram of the complete signal model

,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

o X(n)



3.1.2 Recursive implementation of the LMMSEE

e Objective:
To find arecursive implementatiohof the LMMSEE ofY (n)
based on the observation &f(1), ..., X (n).

e Recursive implementation:

We need the following definitions:

—Y(n|n) = LMMSEE of Y(n) based on the observation of
X(1),...... X(n)
Estimation of Y (n).

~

—Y(n+1|n) =LMMSEE of Y(n + 1) based on the observation of

One-step prediction o¥ (n + 1) at timen.
— X(n+1|n) =LMMSEE of X(n + 1) based on the observation of
X(1), .., X ()

One-step prediction o (n + 1).

Recursive implementation of the LMMSEE bf(n):

Y(n+1|n+1)=LF(Y(n|n),X(n+1))

Y
7

Estimation Estimation Observation
attimen +1 at timen attimen+1

whereLF denotes a linear function to be found.

1See Section 3.3 for an example of a recursive estimator.
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e We shall know:

1. Such a recursive implementation of the LMMSEE exists. It is called the

Kalman Filter.
2. The recursion is split into two steps:

— Stepl: One-step prediction

P:Y(n|n)?f/(n+1\n)

— Step2: Updating

X(n+1)
_

U:Y(n+1]|n) Y(in+1|n+1)

Temporal evolution of the recursive estimation procedure in the Kalman filte

n n+1
X (n) X(n+1)

X(n)

V(n|n—1) 2" Y(n|n) > Vin+1|n) Xty

Y(n+1|n+1) e



3. The mean-squared estimation erfef{Y (n) — Y'(n | n))?] can also be
computed recursively.
We shall need the following definitions:
e R(n|n)=E[(Y(n)—Y(n|n))

= mean-squared estimation error at time

e Rn+1n)=E[(Y(n+1)—Y(n+1|n)?

= mean-squared one-step prediction error at time



3.1.3 Derivation of the equations of the Kalman filter

e Prediction step:

~

Y(n+1|n) = h(n+1)Y(n|n) (3.3)

Rn+1|n) = h*(n+1)R(n|n)+os,n+1) (3.4)

Proof of (3.3)

(3.3) follows from the linearity property of the expectation.

Zn+1) g Y(n+1)=h(n+1)Y(n)+ Zn+1)

P/L (n+ DY (nln)
. ‘ h(n+1)Y(n)

Y(nn)

Let us show that (3.3) satisfies the orthogonality principle (OP) and therefore
is the LMMSEE:

Letm=1,...n:

E[( Y(n+1) — Y(n+1]|n)X(m)]

N\

— E((h(n + )Y (n) + Z(n + 1) — h(n + DY (n | n)) X (m)]
=h(n+1) E[(Y(n) = Y(n|n))X(m)] + E[Z(n+1)X(m)]

forY (n|n) Z(n+1)andX(n)
are uncorrelated

=0



Proof of (3.4)

Rn+1]|n)=E[ Y(n+1) —  Y(n+1|n)}

7\ -~ -~

E[(h(n+1)Y(n) + Z(n+1)—h(n+1)Y (n | n))?
h

= E[(h(n+ )Y (n) = Y(n | )|+ Z(n + 1))

7 A 7
N~ "~

These two random variables are uncorrelated
= h(n+ 1)°E[(Y (n) = ¥ (n | n))*] + E[Z(n + 1)?]

= h(n+1)*R(n | n) + 677(n +1)

With the same argument as that used for the proof of (3.3) we show that

X(n+1|n)=an+1)Y(n+1]|n)

Block diagram of the prediction step

h(n+1) a(n+1)

R@p@»@ @E 0

h(n+1)?  o0%,(n+1)




e Updating step:

~ A~ A~

Y(n+1|n+1) = Yn+1|n)+bn+1)X(n+1)—X(n+1|n) (3.5
Rn+1|n+1) = [1=b(n+1)a(n+1)]R(n+1]|n) (3.6)

with
an+1)R(n+1|n)
a(n+1)2R(n+1|n)+ ody(n+1)

bn+1) =

Interpretation of (3.5)

One-step
New prediction
observation of )i(" +1)
~ ~ N — ~
Y(n+l|n+l)= Yn+1|in) +bn+1)[Xn+1) — X(n+1|n) ]
— N ~~ d
One-step Residual error
prediction of X(n+1|n)
of Y(n+1) S -

TV .
Correction factor

Kalman gain

The coefficient(n) is called thekalman gainof the filter.



Proof of (3.5):
We seek an updating equation given by (3.5) and deteriime- 1) so that

(3.5) satisfies the orthogonality principle.

1t casem =1,...,n
E(Y(n+1)=Y(n+1|n+1)X(m)]

=E[(Y(n+1)=Y(n+1|n)X(m)]—bn+1)E[(X(n+1) — X(n+1]|n))X(m)]

7

~ ~N"~

OP forY (n+1 | n) OPforX(n+1]|n)

=0

ond case:rm =n + 1

~

El(Y(n+1)=Y(n+1|n+1))X(n+1)]

~

=E[(Y(n+1)—Y(n+1|n)X(n+1)]

A~

b+ DE[(X(n+1) — X(n+1|n)X(n+1)]

We determiné(n + 1) such that the above expression vanishes:

b(n + 1) = E(Y(n+1)=Y(m+1|[n)X(n+1)] I
E(X(n+1)=X(n+1|n)X(n+1)] 1
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— Computation of/:

[=E[(Y(n+1)=Y(n+1|n)) X(n+1)]

7\

—E[(Y(n+1) = YV(n+1|n)(an+ )Y (n+1) +Wn+ 1)

~

=a(n+ DEY (1 +1) - V(n +1|m)Y(n+ 1)

=E[(Y(n+1)=Y(n+1|n))?

1OP = E[(Y-Y)Y] = E[(Y-Y)?]
+E[(Y(n+1)— Y(n—+1|n))W(n+ 1)]

A~

=0 Y(n+1)—Y(n+1|n)andW(n+ 1) are uncorrelated

becaus&’ (n+1) —Y(n+1|n) depends on
Y (0),Y(1),...Y(n),Y(n+1),X(1),..., X(n)
=an+1D)E[(Y(n+1) =Y (n+1]|n))?

I=a(n+1)R(n+1]|n)

— Computation ofII:

A

I=E[(X(n+1)—X(n+1|n)X(n+1)

= E( X(n+1) - X(n+1|n)} «OP

— Bl + DY (1 D+ Wn+ D—an+1)¥ (n+1|n))?

= Ella(n+ 1) (Y(n+1) = V(n+1|n) +W(n+1)7

these random variables are uncorrelated
—an+12E[(Y(n+1)=Y(n+1|n)?+EW(n+1)7

II=an+1)Rn+1|n)+ociy(n+1)
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Proof of (3.6}

Rin+1|n+1)=E[(Y(n+1)=Y(n+1]|n+1))}

LE(Y(n+1)-Ym+1|n+1)Y(n+1)

~

=E[(Y(n+1) = Y(n+1[m)Y(n+1)]

LE(Y(n+1)-Y(n+1|n)]=Rn+1]|n)

—b(n+1DE[(X(n+1)—X(n+1|n))Y(n+1)]

-~

—an+1D)Yn+1)+Whn+1)—an+1)Y(n+1|n)

~

=an+1)Y(n+1)—=Y(n+1|n)+W(n+1)
=R(n+1|n)

A~

—bn+Lan+1E[(Y(n+1)-Y(n+1|n))Y(n+1)

LE(Y(n+1)—Ym+1|n)Y

—b(n+1EY (n+1)W(n+1)]

these random variables
are uncorrelated:
EY(n+1)W(n+1)]=0

=R(n+1|n)—bn+1la(n+1)R(n+1]|n)

Rn+1|n+1)=[1-bn+1)a(n+1)]R(n+1|n)
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Block diagram of the updating step

A

Y(n+1jn)

~

X(n+1n) — N é
T T

Xn+1) bn+1)

@

oY (n+1n+1)

<

R(n + 1|n) ?

1 —bn+1)a(n+1)

e Initialization:

Y(0]0) = piy)

R(0 | 0) = oy,
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Block diagram of the Scalar Kalman filter

a(n) h(n)

'Noiseless
. channel
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3.1.4 Steady-state Kalman filter when the system and channel models are

time-invariant

We consider the time-invariant system and channel models as depicted below:

? Delay

The system-driving process(n) and the channel noisé’ (n) are uncorrelated
white wide-sense stationary process:

o E[Z(n)Z(n+k)] =o0%,(n)ik)

o EW(n)W(n+k)] = ol 0(k)

Equations of the Kalman filter estimating(n):

R(n+1]|n)= hQR(n | n) +J%Z

aR(n+1|n
b(n+1)=— ( | >2
a’R(n+1|n)+ oy

Rin+1|n+1)=[1—ab(n+1)|R(n+1|n)
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Forn — oo the three sequencg®(n + 1 | n)}, {b(n)}, and{R(n+1|n+1)}

converge, i.e.

Rn+1|n) — Ry
b(n) — b n — 0o

Rn+1|n+1) — Rx

The Kalman filter converges to isteady state

The above limits can be calculated by inserting them into the equations of the

Kalman filter:

Ryoo = B’ Roo + 0% (3.7)
aR

b = P 3.8

a’Ry + Ja/W (38)

Roo = [1 — abo] Rpoo (3.9)

Inserting (3.8) into (3.9), we obtain

—= B 5
a* Ry oo + Oy
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Substituting (3.7) into the last expression yields the so-called steady-state

Ricatti equation

R — ofyw R + 07 ]
* @[h Ry + 0%, + oy

The Ricatti equation is a quadratic equation that can be solved numerically. e.

by using Newton’s method.

Then, R, and bfo) follow by inserting the numerical solution fdt, into (3.7)

and (3.8), respectively.

Example

The steady-state solutions for the model with parameter setting

o ozz=owyw =1
read

o R, =0.5974
o R, =14839

o by =0.5974
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Input-output relationship of the steady-state Kalman filter:

Y(n|n)=hY(n—1|n—1)+bo[X(n)—ahY(n—1|n—1)]

— b X (n) + h[l —abs )Y (n—1|n—1)

Block-diagram of the steady-state Kalman filter

> Y(n|n)
X(”Hi%»@ Delay Y(n—1n—1)
b(0) ‘
>< -
h[1 — ab(o0)]

The steady-state Kalman filter is an infinite impulse response (IIR) fNidr

transfer function
boo
H pu—
(/) 1 — h[l — abs] exp(—j2n f)
boo
H pu—
() 1 —h[l —abylz7!
Example (cont’d)
0.5974
Heo(f)

" 1-0.3623 - exp(—j2nf)
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20 T

r _ 1
v P Syy(f) = 0.9 exp(—j2A )]

[¥]

PSD and filter magnitude response (dB)

-10 I ! I I
-0.5 -0.4 -0.3 -0.2 -0.1 0 0.1 0.2 0.3 0.4 0.5

Frequency

Comment
The steady-state Kalman filter calculates the LMMSEE ¢f) based on the ob-
servation of the sequeng& (n)} in the time windown,n — 1,n —2,...]

Hence, the steady-state Kalman filter implementsGhasal Wiener filter
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3.2 Vector Kalman Filter

3.2.1 Signal Model

e System model

where:
- Y(n) = [Yi(n),...,Y.(n)]': r-dimensional (-D) random

vector.

—{Z(n)}: r-D non-stationary white noise vector:
— FE[Z(n)]=0
= 2zm)zmr) = Qz(n)o(k)

—{H(n)}: sequence of known x r matrices.

See the example discussed in Section 3.4.

Block diagram

Z(n)o—~(}) > Y (n)
H(n) Y(n—1 | ynit

delay

Initialization
Y (0) is a random vector specified by its expectatjap,) and covariance

matrix Zy(o)y(o).
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e Observation Model

X(n)=AMn)Y(n)+W(n),n=12,... (3.11)

— X(n) = [X1(n), ..., Xs(n)]*:  s-D random vector.

— {W(n)}: s-D non-stationary white noise vector with auto-
covariance
YWy Wntk) = Qwn)o (k)

— {A(n)}: sequence of knowr x r matrices.

Block Diagram

Y(n) o= A(n) @ o X(n)

e Additional independence assumption

Y (0),{Z(n)}, and {W(n)} are uncorrelated.
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e Complete Signal Model

a
z

Y(n—1

~—

Unit
delay

3.2.2 Equation of the vector Kalman filter

Let us define

e Y(n|n) = LMMSEEof Y(n) basedon X(1),..,X(n)

e Y(n+1|n) = LMMSEEof Y(n+1) basedon X(1),..,X(n)

e X(n+1|n) = LMMSEEof X(n+1) basedon X(1),...,X(n)

e R(n|n) = E[(Y(n)=Y(n|n)(Y(n)-Y(nn)"

e Rn+1|n) = E[(Yn+1)—=Y0m+1|n)(Y(n+1)—Y(n+1n)"]

We can apply the same reasoning as used for the scalar Kalman filter tarsitow

the recursive equations of the vector Kalman filter are given as follows.
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e Recursive equations of the Kalman filter

Prediction Step

A

Y(n+1|n) = Hn+1)Y(n|n)

X(n+1|n) = A(n+1)Y(n+1]|n)

R(n+1|n) = Hn+1)R(n|n)Hn+1)' +Qz(n+1)

Updating Step

Yn+1|n+1)=Yn+1|n)+Brn+1)Xn+1)—X(n-+1]|n)
Rn+1|n+1)=I-Bn+1)An+1)]R(n+1|n)
with the Kalman matrix

B(n+1)=Rn+1|n)An+ DA+ 1DRn+1|n)An+ D"+ Qw(n + 1)

Initialization :

Y (01]0) = py(0)
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e Block diagram of the vector Kalman filter

‘Noiseless
- channel |
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3.3 Example of a recursive estimator

e Signal model

X(n)=Y + W(n) n=123,..

Where:
— Y is and unknown constant to be estimated based on the

observation of X (n)}.

— {W(n)} is a white noise sequence.

e Arithmetic mean

An appealing linear estimator faf is thearithmetic mean

V(n) = %ZX(m)

Drawback: To computeY (n) based on the above formul&;(1), ..., X (n)

need to be stored. The required memory grows linearly with

e Recursive implementation

f/(n+1)—ni1 (m) + ——X(n+1)
Y(n+1):n+1A(n)+n 1X(n+1)

This estimator requires storage of one value,ﬁ’.(an), only.
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3.4 Example of a signal model: Target tracking

e Equations of the movement of a target:

t
Position Ut)= [V()dt' +U(0), U(0): initial position
0

t
Velocity. V(t)= [G{")dt'+ V(0), V(0): initial velocity
0

Acceleration G(t) is assumed to be white noise.

e Discrete-time model:
du () = V(t) du(nT,) =~

G () =G() G (nT,) ~

U((n+ 1)Ts) — UnTs) = V(nTy) - T Ts: Sampling interval

V(n+1)T,) =V (nT,) = GnT,)-T,  G= G(t)low-pass filtered with

bandwidth,-..
State model
vnT)| {1 T, U((n—l)TS)] N 0 ]
Ve o 1] [Vie-vm)] |6 - 01|
Y(n) = H@®n  Ywn-1) + Zn
with
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Observation model

X(n)=UnTs)+  W(n)
Measurement error
X(n)=[1 0]Y(n)+ W(n)
A(n)

wherelV (n) is white noise with variancey, ;.
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