Lecture 1 Radio Channel Characterization for MIMO System Applications

Xuefeng Yin

Graduate course: Propagation Channel Characterization, Tongji University

Content

Introduction

Eigenchannel presentation of a MIMO system

- Propagation constellation
- General representation of a MIMO system
- Summary

MIMO systems

Transfer matrix of MIMO systems

Signal at the output of the nth Rx antenna:

$$y_n = \sum_{m=1}^{M_1} H_{nm} x_m + w_n \qquad n = 1, \dots, M_2.$$

In matrix form:

 $oldsymbol{y} = oldsymbol{H}oldsymbol{x} \ + \ oldsymbol{w}, \quad oldsymbol{w}$: spatially white complex noise

Singular value decomposition

The transfer matrix $oldsymbol{H}$ can be decomposed according to

$oldsymbol{H} = oldsymbol{U}oldsymbol{F}oldsymbol{V}^{ ext{H}}$

K is the rank of H and $\gamma_1, \cdots, \gamma_K$ are the eigenvalues of HH^{H} .

Eigenchannels of a MIMO system

Multiplying $oldsymbol{U}^{ ext{H}}$ on both sides of $oldsymbol{y} = oldsymbol{H} oldsymbol{x} + oldsymbol{w}$

$$egin{aligned} oldsymbol{U}^{ ext{H}}oldsymbol{y} &= oldsymbol{U}^{ ext{H}}oldsymbol{H}oldsymbol{x} + oldsymbol{U}^{ ext{H}}oldsymbol{w} &= oldsymbol{U}^{ ext{H}}oldsymbol{V}^{ ext{H}}oldsymbol{x} + oldsymbol{U}^{ ext{H}}oldsymbol{w} &= oldsymbol{V}^{ ext{H}}oldsymbol{w} + oldsymbol{U}^{ ext{H}}oldsymbol{w} &= oldsymbol{W}^{ ext{H}}oldsymbol{w} + oldsymbol{U}^{ ext{H}}oldsymbol{w} &= oldsymbol{v}^{ ext{H}}oldsymbol{w} + oldsymbol{U}^{ ext{H}}oldsymbol{w} &= oldsymbol{v}^{ ext{H}}oldsymbol{w} + oldsymbol{U}^{ ext{H}}oldsymbol{w} &= oldsymbol{v}^{ ext{H}}oldsymbol{w} + oldsymbol{v}^{ ex$$

yields

$$ilde{oldsymbol{y}} = oldsymbol{F} ilde{oldsymbol{x}} + ilde{oldsymbol{w}}, \quad {\sf i.e.}$$

$$\begin{bmatrix} \tilde{y}_1 \\ \vdots \\ \tilde{y}_K \\ \vdots \\ \tilde{y}_{M_2} \end{bmatrix} = \begin{bmatrix} \sqrt{\gamma_1} & & & \\ & \ddots & & \\ & & \sqrt{\gamma_K} & & \\ & & & 0 & \\ & & & \ddots \end{bmatrix} \begin{bmatrix} \tilde{x}_1 \\ \vdots \\ \tilde{x}_K \\ \vdots \\ \tilde{x}_{M_1} \end{bmatrix} + \begin{bmatrix} \tilde{w}_1 \\ \vdots \\ \tilde{w}_K \\ \vdots \\ \tilde{w}_{M_2} \end{bmatrix}$$

Graduate course: Propagation Channel Characterization, Tongji University

Eigenchannels of a MIMO system

Graduate course: Propagation Channel Characterization, Tongji University

Key-hole effect

Key-hole MIMO system

Facts:

- If the antenna elements are sufficiently spaced, the correlation between any two entries of *H* nearly vanishes.
- The singular value decomposition of transfer matrix *H* of a key-hole MIMO system reads

$$oldsymbol{H} = oldsymbol{u}_1 \sqrt{\gamma_1} oldsymbol{v}_1^{ ext{H}}.$$

The rank of H is ONE.

Hence, the transfer matrix H of a key-hole MIMO system is a matrix with nearly uncorrelated entries and with rank one.

Propagation Constellation

- Relationship between the entries of the transfer matrix *H* of a MIMO system and the underlying propagation constellation.
- Relationship between the correlation properties of the entries of *H* and the underlying propagation constellation.

Transfer matrix of a MIMO system

The entry $oldsymbol{H}_{n,m}$ can be expressed as

$$egin{aligned} m{H}_{n,m} &= & \int_{\mathbb{S}_2} \int_{\mathbb{S}_2} f_{1,m}(m{\Omega}_1) \exp\{\jmath 2\pi \lambda_0^{-1}(m{\Omega}_1 \cdot m{r}_{1,m})\} \ &\cdot f_{2,n}(m{\Omega}_2) \exp\{\jmath 2\pi \lambda_0^{-1}(m{\Omega}_2 \cdot m{r}_{2,n})\} \ &\cdot h(m{\Omega}_1,m{\Omega}_2) \mathrm{d}m{\Omega}_1 \mathrm{d}m{\Omega}_2. \end{aligned}$$

- \blacksquare λ_0 is the wavelength.
- $f_{i,m}(\Omega)$ is the field pattern of the *m*th element of the *i*th array, $m = 1, ..., M_i$, i = 1, 2.
- The complex function $h(\Omega_1, \Omega_2)$ with definition domain $\mathbb{S}_2 \times \mathbb{S}_2$ is referred to as the *bidirection spread function* in \mathcal{R}_1 and \mathcal{R}_2 of the propagation channel.

Characterization of a direction

Direction spread functions

Bidirection spread function in \mathcal{R}_1 and \mathcal{R}_2 :

 $h(\mathbf{\Omega}_1,\mathbf{\Omega}_2)$

 $h(\mathbf{\Omega}_1, \mathbf{\Omega}_2)$ describes direction dispersion jointly in \mathcal{R}_1 and \mathcal{R}_2 .

Direction spread function in \mathcal{R}_1 :

$$h_1(\mathbf{\Omega}_1) \;\; \doteq \;\; \int_{\mathbb{S}_2} h(\mathbf{\Omega}_1,\mathbf{\Omega}_2) \mathrm{d}\mathbf{\Omega}_2$$

 $h_1(\mathbf{\Omega}_1)$ describes direction dispersion in \mathcal{R}_1 only.

Direction spread function in \mathcal{R}_2 :

$$h_2(\mathbf{\Omega}_2) \;\; \doteq \;\; \int_{\mathbb{S}_2} h(\mathbf{\Omega}_1,\mathbf{\Omega}_2) \mathrm{d}\mathbf{\Omega}_1$$

 $h_2(\mathbf{\Omega}_2)$ describes direction dispersion in \mathcal{R}_2 only.

Graduate course: Propagation Channel Characterization, Tongji University

Direction spread function

Example of estimated direction spread functions:

Transfer matrix of a MIMO system

Responses of the antenna arrays:

$$\boldsymbol{c}_{i}(\boldsymbol{\Omega}_{i}) \doteq \begin{bmatrix} f_{i,1}(\boldsymbol{\Omega}_{i}) \exp\{j2\pi\lambda_{0}^{-1}(\boldsymbol{\Omega}_{i} \cdot \boldsymbol{r}_{i,1})\}, \\ \vdots \\ f_{i,M_{i}}(\boldsymbol{\Omega}_{i}) \exp\{j2\pi\lambda_{0}^{-1}(\boldsymbol{\Omega}_{i} \cdot \boldsymbol{r}_{i,M_{i}})\} \end{bmatrix} , \quad i = 1, 2$$

With the above definition, the entry $oldsymbol{H}_{n,m}$ can be recast as

$$oldsymbol{H}_{n,m} = \int_{\mathbb{S}_2} \int_{\mathbb{S}_2} [oldsymbol{c}_1(oldsymbol{\Omega}_1)]_m [oldsymbol{c}_2(oldsymbol{\Omega}_2)]_n h(oldsymbol{\Omega}_1,oldsymbol{\Omega}_2) \mathrm{d}oldsymbol{\Omega}_1 \mathrm{d}oldsymbol{\Omega}_2.$$

Transfer matrix of a MIMO system

The transfer matrix $oldsymbol{H}$ can be expressed as

$$oldsymbol{H} = \int_{\mathbb{S}_2} \int_{\mathbb{S}_2} oldsymbol{c}_1(oldsymbol{\Omega}_1)^{\mathrm{T}} \otimes oldsymbol{c}_2(oldsymbol{\Omega}_2) h(oldsymbol{\Omega}_1,oldsymbol{\Omega}_2) \mathrm{d}oldsymbol{\Omega}_1 \mathrm{d}oldsymbol{\Omega}_2$$

The above equation relates the transfer matrix of the MIMO system

- to the propagation constellation via the bidirection spread function h(Ω₁, Ω₂),
 ■ to the array characteristics, i.e. layouts and field patterns, via the
 - array responses $oldsymbol{c}_i(oldsymbol{\Omega})$, i=1,2.

Key-hole effect

 $h(\mathbf{\Omega}_1,\mathbf{\Omega}_2) = h_1(\mathbf{\Omega}_1)h_2(\mathbf{\Omega}_2)$

Graduate course: Propagation Channel Characterization, Tongji University

Correlation matrix of a MIMO system

Vectorize the transfer matrix **H**:

$$\boldsymbol{H}^{s} \doteq [H_{1,1}, \dots, H_{M_{2},1}, \dots, H_{1,M_{1}}, \dots, H_{M_{2},M_{1}}]^{T}$$

Covariance matrix of a MIMO system:

$$\boldsymbol{\mathit{R}}_{\boldsymbol{\mathit{H}}} \doteq \mathsf{E}[(\boldsymbol{\mathit{H}}^{\mathrm{s}} - \mathsf{E}[\boldsymbol{\mathit{H}}^{\mathrm{s}}])((\boldsymbol{\mathit{H}}^{\mathrm{s}} - \mathsf{E}[\boldsymbol{\mathit{H}}^{\mathrm{s}}]))^{\mathrm{H}}]$$

where

$$\blacksquare$$
 E[·] is the expectation operator.

Correlation matrix of a MIMO system

WSS/US (Wide-Sense-Stationary/Uncorrelated Scattering) assumption: We assume that the bidirection spread function is a zero-mean uncorrelated process, i.e.

where

$$P(\mathbf{\Omega}_1, \mathbf{\Omega}_2) \doteq \mathsf{E}\Big[|h(\mathbf{\Omega}_1, \mathbf{\Omega}_2)|^2\Big]$$

is called the *bidirection power spectrum* in \mathcal{R}_1 and \mathcal{R}_2 .

 $P(\Omega_1, \Omega_2)$ characterizes the way the average power propagating from \mathcal{R}_1 to \mathcal{R}_2 is distributed with respect to the launching direction Ω_1 and the incident direction Ω_2 .

Correlation matrix of a MIMO system

If the WSS/US assumption holds, the correlation matrix of the MIMO system reads

$$oldsymbol{R}_{oldsymbol{H}} = \int_{\mathbb{S}_2} \int_{\mathbb{S}_2} \left[oldsymbol{c}_1(oldsymbol{\Omega}_1) oldsymbol{c}_1(oldsymbol{\Omega}_1)^{\mathrm{H}}
ight] \otimes \left[oldsymbol{c}_2(oldsymbol{\Omega}_2) oldsymbol{c}_2(oldsymbol{\Omega}_2)^{\mathrm{H}}
ight] P(oldsymbol{\Omega}_1,oldsymbol{\Omega}_2) \mathrm{d}oldsymbol{\Omega}_1 \mathrm{d}oldsymbol{\Omega}_2.$$

The above equation relates the correlation matrix of the MIMO system

- to the propagation constellation via the bidirection power spectrum $P(\mathbf{\Omega}_1, \mathbf{\Omega}_2)$,
- to the array characteristics, i.e. layouts and field patterns, via the array responses $c_i(\Omega)$, i = 1, 2.

Simulation of propagation scenarios

One- and two-bounce scattering:

Path weight:

- One-bounce scattering: $\alpha_{\ell} = s_j (l_{mj} l_{bj})^{-1}$
- Two-bounce scattering: $\alpha_{\ell'} = s_{j'} s_{j''} (l_{mj} l_{jj'} l_{bj'})^{-1}$

Microcellular propagation scenario

One- and two-bounce scatterers generated in one simulation run:

Microcellular propagation scenario

One- and two-bounce scatterers generated in all simulation runs:

Simulated Biazimuth power spectrum $<|h(\phi_1,\phi_2)|^2>$

Only one-bounce scattering is considered.

Simulated Biazimuth power spectrum $<|h(\phi_1,\phi_2)|^2>$

Both one- and two-bounce scattering are considered.

Neasured Biazimuth Power Spectrum $<|h(\phi_1,\phi_2)|^2>$

In a none-line-of-sight (NLOS) scenario in an outdoor environment

Conclusions

Relationship between the entries of the transfer matrix H of a MIMO system and the underlying propagation constellation. $\sqrt{}$

$$oldsymbol{H} = \int \int oldsymbol{c}_1(oldsymbol{\Omega}_1)^{\mathrm{T}} \otimes oldsymbol{c}_2(oldsymbol{\Omega}_2)h(oldsymbol{\Omega}_1,oldsymbol{\Omega}_2)\mathrm{d}oldsymbol{\Omega}_1\mathrm{d}oldsymbol{\Omega}_2$$

Relationship between the correlation properties of the entries of H and the underlying propagation constellation. $\sqrt{}$

$$oldsymbol{R}_{oldsymbol{H}} = \int\!\!\!\int \left[oldsymbol{c}_1(oldsymbol{\Omega}_1)oldsymbol{c}_1(oldsymbol{\Omega}_1)^{
m H}
ight] \otimes \left[oldsymbol{c}_2(oldsymbol{\Omega}_2)oldsymbol{c}_2(oldsymbol{\Omega}_2)^{
m H}
ight] P(oldsymbol{\Omega}_1,oldsymbol{\Omega}_2) {
m d}oldsymbol{\Omega}_1 {
m d}oldsymbol{\Omega}_2.$$

I Explanation of the key-hole effect within this theory. \surd

$$h(\mathbf{\Omega}_1,\mathbf{\Omega}_2) = h_1(\mathbf{\Omega}_1)h_2(\mathbf{\Omega}_2)$$

Graduate Du Generationing Citate Original Cita