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Lecture 1

Radio Channel Characterization

for MIMO System Applications

Xuefeng Yin
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■ Introduction
■ Eigenchannel presentation of a MIMO system
■ Propagation constellation
■ General representation of a MIMO system
■ Summary



MIMO systems
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Transfer matrix of MIMO systems
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Signal at the output of the nth Rx antenna:

yn =

M1∑

m=1

Hnmxm + wn n = 1, . . . ,M2.

In matrix form:
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y = Hx + w, w : spatially white complex noise



Singular value decomposition
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The transfer matrix H can be decomposed according to

H = UFV H

■ (·)H is the Hermitian operator
■ U is a M2 ×M2 complex unitary matrix,
■ V is a M1 ×M1 complex unitary matrix,
■ and

F =












√
γ1

. . . √
γK

0
. . .

0












K is the rank of H and γ1, · · · , γK are the eigenvalues of HHH.



Eigenchannels of a MIMO system
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Multiplying UH on both sides of y = Hx+w

UHy = UHHx+UHw

UHy = UHUFV Hx+UHw

UHy
︸ ︷︷ ︸

ỹ
.
=

= F V Hx
︸ ︷︷ ︸

x̃
.
=

+UHw
︸ ︷︷ ︸

w̃
.
=

yields
ỹ = F x̃+ w̃, i.e.
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Eigenchannels of a MIMO system
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Key-hole effect
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Key-hole MIMO system
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Facts:

■ If the antenna elements are sufficiently spaced, the correlation
between any two entries of H nearly vanishes.

■ The singular value decomposition of transfer matrix H of a
key-hole MIMO system reads

H = u1

√
γ1v

H
1 .

The rank of H is ONE.

Hence, the transfer matrix H of a key-hole MIMO system is a matrix
with nearly uncorrelated entries and with rank one.



Propagation Constellation

Graduate course: Propagation Channel Characterization, Tongji University 10 / 27

■ Relationship between the entries of the transfer matrix H

of a MIMO system and the underlying propagation constellation.

■ Relationship between the correlation properties of the entries
of H and the underlying propagation constellation.
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Transfer matrix of a MIMO system
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The entry Hn,m can be expressed as

Hn,m =

∫

S2

∫

S2

f1,m(Ω1) exp{2πλ−1
0 (Ω1 · r1,m)}

· f 2,n(Ω2) exp{2πλ−1
0 (Ω2 · r2,n)}

·h(Ω1,Ω2)dΩ1dΩ2.

■ λ0 is the wavelength.

■ f i,m(Ω) is the field pattern of the mth element of the ith array,
m = 1, . . . ,Mi, i = 1, 2.

■ The complex function h(Ω1,Ω2) with definition domain S2 × S2 is
referred to as the bidirection spread function in R1 and R2 of the
propagation channel.



Characterization of a direction
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001
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Ω = e(φ, θ)
.
= [cos(φ) sin(θ), sin(φ) sin(θ), cos(θ)]T ∈ S2



Direction spread functions
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Bidirection spread function in R1 and R2:

h(Ω1,Ω2)

h(Ω1,Ω2) describes direction dispersion jointly in R1 and R2.

Direction spread function in R1:

h1(Ω1)
.
=

∫

S2

h(Ω1,Ω2)dΩ2

h1(Ω1) describes direction dispersion in R1 only.

Direction spread function in R2:

h2(Ω2)
.
=

∫

S2

h(Ω1,Ω2)dΩ1

h2(Ω2) describes direction dispersion in R2 only.



Direction spread function
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Example of estimated direction spread functions:
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Transfer matrix of a MIMO system
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Responses of the antenna arrays:

ci(Ωi)
.
=






f i,1(Ωi) exp{2πλ−1
0 (Ωi · ri,1)},

...
f i,Mi

(Ωi) exp{2πλ−1
0 (Ωi · ri,Mi

)}




 , i = 1, 2

With the above definition, the entry Hn,m can be recast as

Hn,m =

∫

S2

∫

S2

[c1(Ω1)]m[c2(Ω2)]nh(Ω1,Ω2)dΩ1dΩ2.



Transfer matrix of a MIMO system
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The transfer matrix H can be expressed as

H =

∫

S2

∫

S2

c1(Ω1)
T ⊗ c2(Ω2)h(Ω1,Ω2)dΩ1dΩ2

The above equation relates the transfer matrix of the MIMO system

■ to the propagation constellation via the bidirection spread function
h(Ω1,Ω2),

■ to the array characteristics, i.e. layouts and field patterns, via the
array responses ci(Ω), i = 1, 2.



Key-hole effect
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Correlation matrix of a MIMO system
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Vectorize the transfer matrix H :

Hs .
= [H1,1, . . . , HM2,1, . . . , H1,M1

, . . . , HM2,M1
]T

Covariance matrix of a MIMO system:

RH
.
= E[(H s − E[H s])((Hs − E[H s]))H]

where

■ E[·] is the expectation operator.



Correlation matrix of a MIMO system
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WSS/US (Wide-Sense-Stationary/Uncorrelated Scattering) assumption:
We assume that the bidirection spread function is a zero-mean
uncorrelated process, i.e.

■ E

[

h(Ω1,Ω2)
]

= 0

■ E

[

h∗(Ω1,Ω2)h(Ω
′

1,Ω
′

2)
]

= P (Ω1,Ω2)δ(Ω
′

1 −Ω1)δ(Ω
′

2 −Ω2)

where
P (Ω1,Ω2)

.
= E

[

|h(Ω1,Ω2)|2
]

is called the bidirection power spectrum in R1 and R2.

P (Ω1,Ω2) characterizes the way the average power propagating from
R1 to R2 is distributed with respect to the launching direction Ω1 and
the incident direction Ω2.



Correlation matrix of a MIMO system
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If the WSS/US assumption holds, the correlation matrix of the MIMO
system reads

RH =

∫

S2

∫

S2

[
c1(Ω1)c1(Ω1)

H
]
⊗
[
c2(Ω2)c2(Ω2)

H
]
P (Ω1,Ω2)dΩ1dΩ2.

The above equation relates the correlation matrix of the MIMO system

■ to the propagation constellation via the bidirection power spectrum
P (Ω1,Ω2),

■ to the array characteristics, i.e. layouts and field patterns, via the
array responses ci(Ω), i = 1, 2.



Simulation of propagation scenarios
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One- and two-bounce scattering:

Tx

Rx

lm
j
′

sj′ sj′′

sj

lj′j′′

l
bj
′
′

lmj
lbj

Path weight:

■ One-bounce scattering: αℓ = sj(lmjlbj)
−1

■ Two-bounce scattering: αℓ′ = sj′sj′′(lmjljj′lbj′)
−1



Microcellular propagation scenario
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One- and two-bounce scatterers generated in one simulation run:
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Microcellular propagation scenario
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One- and two-bounce scatterers generated in all simulation runs:
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Simulated Biazimuth power spectrum < |h(φ1, φ2)|2>
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Only one-bounce scattering is considered.
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Simulated Biazimuth power spectrum < |h(φ1, φ2)|2>
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Both one- and two-bounce scattering are considered.
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Measured Biazimuth Power Spectrum < |h(φ1, φ2)|2>
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In a none-line-of-sight (NLOS) scenario in an outdoor environment
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Conclusions
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■ Relationship between the entries of the transfer matrix H of a
MIMO system and the underlying propagation constellation.

√

H =

∫∫

c1(Ω1)
T ⊗ c2(Ω2)h(Ω1,Ω2)dΩ1dΩ2

■ Relationship between the correlation properties of the entries
of H and the underlying propagation constellation.

√

RH =

∫∫
[
c1(Ω1)c1(Ω1)

H
]
⊗
[
c2(Ω2)c2(Ω2)

H
]
P (Ω1,Ω2)dΩ1dΩ2.

■ Explanation of the key-hole effect within this theory.
√

h(Ω1,Ω2) = h1(Ω1)h2(Ω2)

■ General unifying theory for characterizing MIMO systems.
√
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