Lecture 1
 Radio Channel Characterization for MIMO System Applications

Xuefeng Yin

Content

■ Introduction
■ Eigenchannel presentation of a MIMO system
－Propagation constellation
■ General representation of a MIMO system
■ Summary

MIMO systems

Transfer matrix of MIMO systems

Signal at the output of the nth Rx antenna：

$$
y_{n}=\sum_{m=1}^{M_{1}} H_{n m} x_{m}+w_{n} \quad n=1, \ldots, M_{2} .
$$

In matrix form：

$$
\underbrace{\left[\begin{array}{c}
y_{1} \\
\vdots \\
y_{M_{2}}
\end{array}\right]}_{\boldsymbol{y} \doteq}=\underbrace{\left[\begin{array}{ccc}
H_{11} & \ldots & H_{1 M_{1}} \\
\vdots & & \vdots \\
H_{M_{2} 1} & \ldots & H_{M_{2} M_{1}}
\end{array}\right]}_{\boldsymbol{H} \dot{=}} \underbrace{\left[\begin{array}{c}
x_{1} \\
\vdots \\
x_{M_{1}}
\end{array}\right]}_{\boldsymbol{x} \doteq}+\underbrace{\left[\begin{array}{c}
w_{1} \\
\vdots \\
w_{M_{2}}
\end{array}\right]}_{\boldsymbol{w} \doteq}
$$

$\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{w}, \quad \boldsymbol{w}:$ spatially white complex noise

Singular value decomposition

The transfer matrix \boldsymbol{H} can be decomposed according to

$$
\boldsymbol{H}=\boldsymbol{U} \boldsymbol{F} \boldsymbol{V}^{\mathrm{H}}
$$

■ $(\cdot)^{\mathrm{H}}$ is the Hermitian operator
■ \boldsymbol{U} is a $M_{2} \times M_{2}$ complex unitary matrix，
■ \boldsymbol{V} is a $M_{1} \times M_{1}$ complex unitary matrix，
■ and

$$
\boldsymbol{F}=\left[\begin{array}{cccccc}
\sqrt{\gamma_{1}} & & & & & \\
& \ddots & & & \\
& & \sqrt{\gamma_{K}} & & & \\
& & & 0 & & \\
& & & & \ddots & \\
& & & & & 0
\end{array}\right]
$$

K is the rank of \boldsymbol{H} and $\gamma_{1}, \cdots, \gamma_{K}$ are the eigenvalues of $\boldsymbol{H} \boldsymbol{H}^{\mathrm{H}}$ ．

Eigenchannels of a MIMO system

Multiplying $\boldsymbol{U}^{\mathrm{H}}$ on both sides of $\boldsymbol{y}=\boldsymbol{H} \boldsymbol{x}+\boldsymbol{w}$

$$
\begin{aligned}
& \boldsymbol{U}^{\mathrm{H}} \boldsymbol{y}=\boldsymbol{U}^{\mathrm{H}} \boldsymbol{H} \boldsymbol{x}+\boldsymbol{U}^{\mathrm{H}} \boldsymbol{w} \\
& \boldsymbol{U}^{\mathrm{H}} \boldsymbol{y}=\boldsymbol{U}^{\mathrm{H}} \boldsymbol{U} \boldsymbol{F} \boldsymbol{V}^{\mathrm{H}} \boldsymbol{x}+\boldsymbol{U}^{\mathrm{H}} \boldsymbol{w} \\
& \underbrace{\boldsymbol{U}^{\mathrm{H}} \boldsymbol{y}}_{\tilde{\boldsymbol{y}} \dot{=}}=\boldsymbol{F} \underbrace{\dot{\boldsymbol{w}} \doteq}_{\tilde{\boldsymbol{x}} \dot{\boldsymbol{V}} \underbrace{\mathrm{H}} \boldsymbol{x}}+\underbrace{\boldsymbol{U}^{\mathrm{H}} \boldsymbol{w}}
\end{aligned}
$$

yields

$$
\begin{gathered}
\tilde{\boldsymbol{y}}=\boldsymbol{F} \tilde{\boldsymbol{x}}+\tilde{\boldsymbol{w}}, \text { i.e. } \\
{\left[\begin{array}{c}
\tilde{y}_{1} \\
\vdots \\
\tilde{y}_{K} \\
\vdots \\
\tilde{y}_{M_{2}}
\end{array}\right]=\left[\begin{array}{ccccc}
\sqrt{\gamma_{1}} & & & & \\
& \ddots & & & \\
& & \sqrt{\gamma_{K}} & & \\
& & & 0 & \\
& & & & \ddots
\end{array}\right]\left[\begin{array}{c}
\tilde{x}_{1} \\
\vdots \\
\tilde{x}_{K} \\
\vdots \\
\tilde{x}_{M_{1}}
\end{array}\right]+\left[\begin{array}{c}
\tilde{w}_{1} \\
\vdots \\
\tilde{w}_{K} \\
\vdots \\
\tilde{w}_{M_{2}}
\end{array}\right]}
\end{gathered}
$$

Eigenchannels of a MIMO system

$\tilde{x}_{K+\mathrm{f}}$

$\tilde{x}_{M_{1}}$ 。

Key－hole effect

Key－hole MIMO system

Facts：
■ If the antenna elements are sufficiently spaced，the correlation between any two entries of \boldsymbol{H} nearly vanishes．

■ The singular value decomposition of transfer matrix \boldsymbol{H} of a key－hole MIMO system reads

$$
\boldsymbol{H}=\boldsymbol{u}_{1} \sqrt{\gamma_{1}} \boldsymbol{v}_{1}^{\mathrm{H}} .
$$

The rank of \boldsymbol{H} is $O N E$ ．

Hence，the transfer matrix \boldsymbol{H} of a key－hole MIMO system is a matrix with nearly uncorrelated entries and with rank one．

Propagation Constellation

■ Relationship between the entries of the transfer matrix \boldsymbol{H} of a MIMO system and the underlying propagation constellation.

- Relationship between the correlation properties of the entries of \boldsymbol{H} and the underlying propagation constellation.

Transfer matrix of a MIMO system

The entry $\boldsymbol{H}_{n, m}$ can be expressed as

$$
\begin{aligned}
\boldsymbol{H}_{n, m}=\int_{\mathbb{S}_{2}} & \int_{\mathbb{S}_{2}} f_{1, m}\left(\boldsymbol{\Omega}_{1}\right) \exp \left\{\jmath 2 \pi \lambda_{0}^{-1}\left(\boldsymbol{\Omega}_{1} \cdot \boldsymbol{r}_{1, m}\right)\right\} \\
& \cdot f_{2, n}\left(\boldsymbol{\Omega}_{2}\right) \exp \left\{\jmath 2 \pi \lambda_{0}^{-1}\left(\boldsymbol{\Omega}_{2} \cdot \boldsymbol{r}_{2, n}\right)\right\} \\
& \cdot h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1} \mathrm{~d} \boldsymbol{\Omega}_{2} .
\end{aligned}
$$

－λ_{0} is the wavelength．
■ $f_{i, m}(\boldsymbol{\Omega})$ is the field pattern of the m th element of the i th array， $m=1, \ldots, M_{i}, i=1,2$ ．

■ The complex function $h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)$ with definition domain $\mathbb{S}_{2} \times \mathbb{S}_{2}$ is referred to as the bidirection spread function in \mathcal{R}_{1} and \mathcal{R}_{2} of the propagation channel．

Characterization of a direction

Direction spread functions

Bidirection spread function in \mathcal{R}_{1} and \mathcal{R}_{2} ：

$$
h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)
$$

$h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)$ describes direction dispersion jointly in \mathcal{R}_{1} and \mathcal{R}_{2} ．

Direction spread function in \mathcal{R}_{1} ：

$$
h_{1}\left(\boldsymbol{\Omega}_{1}\right) \doteq \int_{\mathbb{S}_{2}} h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{2}
$$

$h_{1}\left(\boldsymbol{\Omega}_{1}\right)$ describes direction dispersion in \mathcal{R}_{1} only．

Direction spread function in \mathcal{R}_{2} ：

$$
h_{2}\left(\boldsymbol{\Omega}_{2}\right) \doteq \int_{\mathbb{S}_{2}} h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1}
$$

$h_{2}\left(\boldsymbol{\Omega}_{2}\right)$ describes direction dispersion in \mathcal{R}_{2} only．

Direction spread function

Example of estimated direction spread functions：

Transfer matrix of a MIMO system

Responses of the antenna arrays：

$$
\boldsymbol{c}_{i}\left(\boldsymbol{\Omega}_{i}\right) \doteq\left[\begin{array}{c}
f_{i, 1}\left(\boldsymbol{\Omega}_{i}\right) \exp \left\{j 2 \pi \lambda_{0}^{-1}\left(\boldsymbol{\Omega}_{i} \cdot \boldsymbol{r}_{i, 1}\right)\right\}, \\
\vdots \\
f_{i, M_{i}}\left(\boldsymbol{\Omega}_{i}\right) \exp \left\{j 2 \pi \lambda_{0}^{-1}\left(\boldsymbol{\Omega}_{i} \cdot \boldsymbol{r}_{i, M_{i}}\right)\right\}
\end{array}\right] \quad, \quad i=1,2
$$

With the above definition，the entry $\boldsymbol{H}_{n, m}$ can be recast as

$$
\boldsymbol{H}_{n, m}=\int_{\mathbb{S}_{2}} \int_{\mathbb{S}_{2}}\left[\boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right)\right]_{m}\left[\boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right)\right]_{n} h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1} \mathrm{~d} \boldsymbol{\Omega}_{2}
$$

Transfer matrix of a MIMO system

The transfer matrix \boldsymbol{H} can be expressed as

$$
\boldsymbol{H}=\int_{\mathbb{S}_{2}} \int_{\mathbb{S}_{2}} \boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right)^{\mathrm{T}} \otimes \boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right) h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1} \mathrm{~d} \boldsymbol{\Omega}_{2}
$$

The above equation relates the transfer matrix of the MIMO system
■ to the propagation constellation via the bidirection spread function $h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)$ ，
■ to the array characteristics，i．e．layouts and field patterns，via the array responses $\boldsymbol{c}_{i}(\boldsymbol{\Omega}), i=1,2$ ．

Key－hole effect

Correlation matrix of a MIMO system

Vectorize the transfer matrix \boldsymbol{H} ：

$$
\boldsymbol{H}^{\mathrm{s}} \doteq\left[H_{1,1}, \ldots, H_{M_{2}, 1}, \ldots, H_{1, M_{1}}, \ldots, H_{M_{2}, M_{1}}\right]^{\mathrm{T}}
$$

Covariance matrix of a MIMO system：

$$
\boldsymbol{R}_{\boldsymbol{H}} \doteq \mathrm{E}\left[\left(\boldsymbol{H}^{\mathrm{s}}-\mathrm{E}\left[\boldsymbol{H}^{\mathrm{s}}\right]\right)\left(\left(\boldsymbol{H}^{\mathrm{s}}-\mathrm{E}\left[\boldsymbol{H}^{\mathrm{s}}\right]\right)\right)^{\mathrm{H}}\right]
$$

where
■ $\mathrm{E}[\cdot]$ is the expectation operator．

Correlation matrix of a MIMO system

WSS／US（Wide－Sense－Stationary／Uncorrelated Scattering）assumption： We assume that the bidirection spread function is a zero－mean uncorrelated process，i．e．

$$
\begin{aligned}
& \text { - } \mathrm{E}\left[h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)\right]=0 \\
& \text { - } \mathrm{E}\left[h^{*}\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) h\left(\boldsymbol{\Omega}_{1}^{\prime}, \boldsymbol{\Omega}_{2}^{\prime}\right)\right]=P\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \delta\left(\boldsymbol{\Omega}_{1}^{\prime}-\boldsymbol{\Omega}_{1}\right) \delta\left(\boldsymbol{\Omega}_{2}^{\prime}-\boldsymbol{\Omega}_{2}\right)
\end{aligned}
$$

where

$$
P\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \doteq \mathrm{E}\left[\mid h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)^{2}\right]
$$

is called the bidirection power spectrum in \mathcal{R}_{1} and \mathcal{R}_{2} ．
$P\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)$ characterizes the way the average power propagating from \mathcal{R}_{1} to \mathcal{R}_{2} is distributed with respect to the launching direction Ω_{1} and the incident direction Ω_{2} ．

Correlation matrix of a MIMO system

If the WSS／US assumption holds，the correlation matrix of the MIMO system reads

$$
\boldsymbol{R}_{\boldsymbol{H}}=\int_{\mathbb{S}_{2}} \int_{\mathbb{S}_{2}}\left[\boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right) \boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right)^{\mathrm{H}}\right] \otimes\left[\boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right) \boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right)^{\mathrm{H}}\right] P\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1} \mathrm{~d} \boldsymbol{\Omega}_{2}
$$

The above equation relates the correlation matrix of the MIMO system
■ to the propagation constellation via the bidirection power spectrum $P\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)$ ，
－to the array characteristics，i．e．layouts and field patterns，via the array responses $\boldsymbol{c}_{i}(\boldsymbol{\Omega}), i=1,2$ ．

Simulation of propagation scenarios

One－and two－bounce scattering：

Path weight：
■ One－bounce scattering：$\alpha_{\ell}=s_{j}\left(l_{\mathrm{m} j} l_{\mathrm{b} j}\right)^{-1}$
■ Two－bounce scattering：$\alpha_{\ell^{\prime}}=s_{j^{\prime}} s_{j^{\prime \prime}}\left(l_{\mathrm{m} j} l_{j j^{\prime}} l_{\mathrm{bj} j^{\prime}}\right)^{-1}$

Microcellular propagation scenario

One－and two－bounce scatterers generated in one simulation run：

Microcellular propagation scenario

One－and two－bounce scatterers generated in all simulation runs：

Simulated Biazimuth power spectrum $<\left|h\left(\phi_{1}, \phi_{2}\right)\right|^{2}>$

Only one－bounce scattering is considered．

Simulated Biazimuth power spectrum $<\left|h\left(\phi_{1}, \phi_{2}\right)\right|^{2}>$

Both one- and two-bounce scattering are considered.

月渗大学

Measured Biazimuth Power Spectrum $<\left|h\left(\phi_{1}, \phi_{2}\right)\right|^{2}>$

In a none－line－of－sight（NLOS）scenario in an outdoor environment

Conclusions

- Relationship between the entries of the transfer matrix \boldsymbol{H} of a MIMO system and the underlying propagation constellation. $\sqrt{ }$

$$
\boldsymbol{H}=\iint \boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right)^{\mathrm{T}} \otimes \boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right) h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1} \mathrm{~d} \boldsymbol{\Omega}_{2}
$$

■ Relationship between the correlation properties of the entries of \boldsymbol{H} and the underlying propagation constellation.

$$
\boldsymbol{R}_{\boldsymbol{H}}=\iint\left[\boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right) \boldsymbol{c}_{1}\left(\boldsymbol{\Omega}_{1}\right)^{\mathrm{H}}\right] \otimes\left[\boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right) \boldsymbol{c}_{2}\left(\boldsymbol{\Omega}_{2}\right)^{\mathrm{H}}\right] P\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right) \mathrm{d} \boldsymbol{\Omega}_{1} \mathrm{~d} \boldsymbol{\Omega}_{2} .
$$

■ Explanation of the key-hole effect within this theory. $\sqrt{ }$

$$
h\left(\boldsymbol{\Omega}_{1}, \boldsymbol{\Omega}_{2}\right)=h_{1}\left(\boldsymbol{\Omega}_{1}\right) h_{2}\left(\boldsymbol{\Omega}_{2}\right)
$$

