Deterministic radio propagation modeling and ray tracing

- 1) Introduction to deterministic propagation modelling
- 2) <u>Geometrical Theory of Propagation I The ray concept Reflection</u> <u>and transmission</u>
- 3) <u>Geometrical Theory of Propagation II Diffraction, multipath</u>
- 4) <u>Ray Tracing I</u>
- 5) <u>Ray Tracing II Diffuse scattering modelling</u>
- 6) <u>Deterministic channel modelling I</u>
- 7) <u>Deterministic channel modelling II Examples</u>
- 8) <u>Project discussion</u>

Transmission through a wall (1/5)

* Hypotheses: - normal or quasi-normal incidence

- weakly lossy medium

Transmission through a wall (2/5)

In a lossy medium the wavenumber can be written as:

$$k = \omega \sqrt{\mu_0 \varepsilon_c} = \omega \sqrt{\mu_0 \varepsilon_0 \varepsilon_r}$$

The complex relative dielectric constant can be written as:

$$\varepsilon_r = \varepsilon'_r - j\varepsilon''_r = \frac{\varepsilon}{\varepsilon_0} - j\frac{\sigma}{\omega\varepsilon_0}$$

If the medium is <u>weakly lossy ε " << ε '.</u>

A plane wave propagating through the lossy medium has the expression:

$$\mathbf{E} = \mathbf{E}_{\mathbf{0}} e^{-jkr} = \mathbf{E}_{\mathbf{0}} e^{-(\alpha + j\beta)r}; \text{ with } jk = \alpha + j\beta$$

Thus:

$$k = \omega \sqrt{\mu_0 \varepsilon_0 \varepsilon_r} = \omega \sqrt{\mu_0 \varepsilon_0} \sqrt{\varepsilon'_r - j\varepsilon''_r} = \frac{\omega}{c} \sqrt{\varepsilon'_r - j$$

Where the series expansion have been truncated at first order

Transmission through a wall (3/5)

Therefore:

$$jk = \alpha + j\beta \approx \frac{\omega}{c} \sqrt{\varepsilon'_r} \left(\frac{\varepsilon''_r}{2\varepsilon'_r} + j\right) \Rightarrow$$

$$\begin{cases} \alpha \approx \frac{\omega}{c} \sqrt{\varepsilon'_r} \left(\frac{\varepsilon''_r}{2\varepsilon'_r}\right) \\ \beta \approx \frac{\omega}{c} \sqrt{\varepsilon'_r} \end{cases}$$

$$\left| E(r) \right| = \left| E(0) \right| \cdot e^{-\alpha r}$$
$$S(r) = S(0) \cdot e^{-2\alpha r}$$

Transmission through a wall (4/5)

The reflection coefficient at normal incidence for the air-medium interface is

$$\Gamma_{0m} = \frac{1 - \sqrt{\varepsilon_r}}{1 + \sqrt{\varepsilon_r}}$$

The reflection coefficient for the second, medium-air interface is (see the expression of the reflection coefficients for normal incidence)

$$\Gamma_{m0} = \frac{\sqrt{\varepsilon_r} - 1}{1 + \sqrt{\varepsilon_r}} = -\Gamma_{0m}$$

Now if we consider the first interface we have

$$\frac{S_{refl1}}{S_{inc1}} = \frac{\left|\vec{E}_{refl1}\right|^2}{\left|\vec{E}_{in1}\right|^2} = \left|\Gamma_{0m}\right|^2$$

Transmission through a wall (5/5)

For power conservation we have:

$$S_{inc1} = S_{refl1} + S_{trasm1} \implies 1 = \frac{S_{refl1}}{S_{inc1}} + \frac{S_{trasm1}}{S_{inc1}} = \left|\Gamma_{0m}\right|^2 + \frac{S_{trasm1}}{S_{inc1}}$$
$$\frac{S_{trasm1}}{S_{inc1}} = 1 - \left|\Gamma_{0m}\right|^2$$

Now the transmitted power at the first interface, properly multiplied by the lossy-medium attenuation factor becomes the incident power at the second interface, therefore we have

$$\frac{S_{refl2}}{S_{inc2}} = |\Gamma_{m0}|^{2} = |\Gamma_{0m}|^{2} = |\Gamma|^{2} ; \quad \frac{S_{transm2}}{S_{inc2}} = \frac{S_{transm2}}{S_{transm1}e^{-2\alpha w}} = \frac{S_{transm2}}{S_{inc1}\left(1 - |\Gamma|^{2}\right)e^{-2\alpha w}} = 1 - |\Gamma|^{2}$$
Thus:

$$\frac{S_{transm2}}{S_{inc1}} = \frac{S_{out}}{S_{in}} = \left(1 - |\Gamma|^{2}\right)^{2}e^{-2\alpha w} \Rightarrow L_{t} = \frac{S_{in}}{S_{out}} = \frac{e^{2\alpha w}}{\left(1 - |\Gamma|^{2}\right)^{2}}$$

Example of Transmission Loss

Brick wall: ε_r '=4, ε_r "=0.2, w=20 cm

$$|\Gamma|^{2} = \frac{S_{refl1}}{S_{inc1}} \approx \left|\frac{\sqrt{4}-1}{\sqrt{4}+1}\right|^{2} = \frac{1}{9} = 0.11 \text{ or } -9.6 \text{dB}$$

at 1,800 MHz ($\lambda_{o} = 1/6 \text{ m}$): $\alpha = \frac{0.2\pi}{(1/6)\sqrt{4}} = 1.88$
 $L_{t} = \frac{S_{in}}{S_{out}} = (1-0.11)^{2} e^{2(0.2)(1.88)} = 2.7 \text{ or } 4.3 \text{dB}$

Summary of Reflection and Transmission Loss

Ineory			
Wall Type	Frequency Band	Ref. loss	Trans. Loss
Brick, exterior	1.8 - 4 GHz	10 dB	10 dB
Concrete block, interior	2.4 GHz		5 dB
Gypsum board, interior	3.4 GHz	4 dB	2 dB
Measured			
Exterior frame	800 MHz		4 - 7 dB
	5 - 6 GHz		9 - 18 dB
with metal siding	5 GHz		36 dB
Brick, exterior	4 - 6 GHz	10 dB	14 dB
Concrete block, interior	2.4 / 5 GHz		5 / 5 - 10 dB
Gypsum board, interior	2.4 / 5 GHz		3 / 5 dB
Wooden floors	5 GHz		9 dB
Concrete floors	900 MHz		13 dB

(Source: Prof. H.L. Bertoni)

771

Geometrical Theory of Diffraction

The extension of GO to the category of diffracted rays was first introduced by J. B. Keller in 1961 and is based on the following assumptions^[6]:

I. A diffracted ray is generated whenever a ray impinges on an edge (or on a vertex)

II. For every diffracted ray the Fermat's principle holds

Keller's

cone

 θ_i

Incident ray

 $n_i \cdot sin\theta_i = n_d \cdot sin\theta_d$

→ If the rays are in the same material then: $\theta_d = \theta_{i;}$ Therefore diffracted rays ouside the wedge belong to the *Keller's cone*

The diffracted ray (1/3)

- In urban propagation only straight edges (local field principle) are of interest. Vertex diffraction won't be treated here
- If the impinging wave is plane (or can be approximated so for the local field principle) then the diffracted wave is cylindrical for perpendicular incidence ($\theta_d = \theta_i = \pi/2$) and conical for oblique incidence (the wavefront is a cone) [7]
- <u>The diffracted wave is so that one caustic coincides with the edge.</u> Therefore the <u>divergence factor of the diffracted wave/ray is different from that of the incident</u> <u>wave/ray</u> (see further on)
- The diffracted ray field can be computed by solving Maxwell's equations for a plane, <u>cylindrical or spherical wave incident on a straight conducting edge</u> [7, 8, 9] and somehow subtracting from the solution the incident wave and the reflected wave(s).
- Then the diffracted field is expanded in a Luneberg-Kline series from which only the first term (high frequency approx.) is kept in order to derive the *diffraction coefficients*

The diffracted ray (2/3)

The high frequency term has the form:

$$\vec{E}^{d}(s) = \vec{E}^{d}(O') \cdot \sqrt{\frac{\rho_{1}^{d} \cdot \rho_{2}^{d}}{(\rho_{1}^{d} + s) \cdot (\rho_{2}^{d} + s)}} \cdot e^{-j\beta s}$$

 ρ_2 Reference wavefront

 ρ_1^d , ρ_2^d = curvature radii of the diffracted wave. <u>One caustic coincides with the edge</u>: ρ_2^d corresponds to O'-Q_D where O' is the reference point, origin of the coordinate s.

It is useful to choose $O'=Q_D$ ($\rho_2^d=0 \rightarrow$ simpler expression). However for power conservation reasons $E^d(O') \rightarrow \infty$ for $O' \rightarrow Q_D$

Since $E^{d}(s)$ cannot change with the reference system, therefore it must be:

$$\lim_{\substack{O' \to Q_D \\ (\rho_2^d \to 0)}} \left[\vec{E}^d \left(O' \right) \cdot \sqrt{\rho_2^d} \right] = finite \ vector \equiv \vec{E}^i \left(Q_D \right) \cdot \mathbf{D} \quad \square \qquad \searrow \quad \vec{E}^d \left(s \right) = \vec{E}^i \left(Q_D \right) \cdot \mathbf{D} \cdot A \left(\rho^d, s \right) \cdot e^{-j\beta s}$$
with: $A \left(\rho^d, s \right) = \sqrt{\frac{\rho^d}{(\rho^d + s) \cdot s}}$

D is the *diffraction matrix*, which contains the diffraction coefficients

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

The diffracted ray (3/3)<u>Attenzione a ro-d e s'</u>

- trajectory: Fermat's principle
- → Field expression: $\begin{bmatrix} E_{\beta_0}^d \\ E_{\phi}^d \end{bmatrix} = \begin{bmatrix} D_s & 0 \\ 0 & D_h \end{bmatrix} \begin{bmatrix} E_{\beta_0^i}^i(Q_D) \\ E_{\phi^i}^i(Q_D) \end{bmatrix} \cdot A(s, \rho^d) \cdot e^{-j\beta s}$

if the proper local reference system is adopted (see figure) then the diffraction matrix reduces to a 2x2 diagonal matrix, otherwise it's a 3x3 matrix

Φ-polarization is called "hard" (TE), β-polarizationi is called "soft" (TM)

The divergence factor

• For the computation of the diffraction coefficients we refer in the following to a simple case with a cylindrical incident wave.

The diffraction coefficients for a canonical 2D problem

ISB : Incidence Shadow Boundary

RSB : Reflection Shadow Boundary

R I : direct + reflected + diffracted R II : direct + diffracted R III : diffracted

Hypotheses:

- unlimited perfectly conducting wedge of angular width WA = $(2-n)\pi$ ($0 \le n < 2$)
- Infinite uniform linear source parallel to the edge with constant current $I_0 i_z$

cylindrical incident wave with normal incidence

The diffraction coefficients

Adopting the method described above the following Keller's diffraction coefficients are obtained (*Geometrical Theory of Diffraction, GTD*) [9]

$$D^{S}(\phi,\phi',n) = \frac{-e^{-j\pi/4} \cdot \sin(\pi/n)}{n\sqrt{2\pi\beta}} \cdot \left[\frac{1}{\cos(\pi/n) - \cos(\xi'/n)} - \frac{1}{\cos(\pi/n) - \cos(\xi'/n)}\right] \xi^{-} = \Phi - \Phi' \xi^{+} = \Phi - \Phi' \xi^{+} = \Phi + \Phi'$$

$$D^{H}(\phi,\phi',n) = \frac{-e^{-j\pi/4} \cdot \sin(\pi/n)}{n\sqrt{2\pi\beta}} \cdot \left[\frac{1}{\cos(\pi/n) - \cos(\xi'/n)} + \frac{1}{\cos(\pi/n) - \cos(\xi'/n)}\right] \xi^{-} = \Phi - \Phi' \xi^{+} = \Phi + \Phi'$$

Such coefficients have singularities on the shadow boundaries, i.e. when:

$$\xi - = \phi - \phi' = \pi \quad \text{(ISB)}$$

$$\xi + = \phi + \phi' = \pi \quad \text{(RSB)}$$

Therefore also other, more complicated coefficients have been derived which do not have such singularity: the UTD (*Uniform Theory of Diffraction*) coefficients

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

Example (1/2)

Diffraction Coefficients Comparison: n=1.5, phi = 45 deg

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

UTD, considering the diffracted ray and the incident ray

V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

Other notes on GTP

- A single ray can undergo multiple interactions. The resulting ray is therefore a polygonal line and the proper interaction coefficients must be applied at each interaction. The proper divergence factor <u>for the overall piece-wise path must</u> then be applied.
- Reflection and transmission do not change the form of the divergence factor of a ray. Diffraction does.
- Diffraction coefficients for oblique incidence and dielectric wedges have also been derived by some authors
- The interaction called "diffuse scattering" is important but is not treated here. It will be treated further on.

Computation Examples: reflection

For the generic incident astigmatic wave we can write:

Reflection (II)

For a spherical incident wave the expression above becomes $(\rho_1 = \rho_2 = s')$:

$$\vec{E}_r(s) = \vec{E}^0 \frac{e^{-j\beta s'}}{s'} \cdot \underline{\mathbf{R}} \cdot \frac{s'}{s+s'} e^{-j\beta s} = \vec{E}^0 \cdot \underline{\mathbf{R}} \cdot \frac{e^{-j\beta(s+s')}}{s+s'}$$

Diffraction

Diffraction coefficients → Diffracted field

$$\begin{bmatrix} E_{\beta_0}^d \\ E_{\phi}^d \end{bmatrix} = \begin{bmatrix} D_s & 0 \\ 0 & D_h \end{bmatrix} \begin{bmatrix} E_{\beta_0^i}^i (Q_D) \\ E_{\phi^i}^i (Q_D) \end{bmatrix} \cdot A \cdot e^{-j\beta s}$$

A is the *divergence factor* for the diffracted field. For a spherical incident wave:

$$A(s',s) = \sqrt{\frac{s'}{s \cdot (s'+s)}} \qquad \vec{E}^i(Q_D) = \vec{E}^{0i} \frac{e^{-j\beta s'}}{s'}$$

Therefore we have:

$$\begin{bmatrix} \vec{E}_{\beta_0}^d \\ \vec{E}_{\phi}^d \end{bmatrix} = \begin{bmatrix} D_s & 0 \\ 0 & D_h \end{bmatrix} \begin{bmatrix} \vec{E}_{\beta_0'}^{0i} \\ \vec{E}_{\phi'}^{0i} \end{bmatrix} \cdot \frac{1}{\sqrt{s \cdot s' \cdot (s' + s)}} \cdot e^{-j\beta(s+s')}$$

Diffraction (II)

Using the the <u>Dyadic Diffraction coefficient</u>:

$$\underline{\underline{\mathbf{D}}} = D_{\mathrm{s}} \left(\hat{\beta}_{0} \, \hat{\beta}_{0} \right) + D_{h} \left(\hat{\phi} \, \hat{\phi} \right)$$

we have

$$\overline{E}^{d} = \overline{E}^{0} \cdot \underline{\underline{D}} \cdot \frac{1}{\sqrt{s \cdot s' \cdot (s' + s)}} \cdot e^{-j\beta(s+s')}$$

Double interaction (1/2)

Reflection + Vertical Edge Diffraction

Field at the reflection point: *I*

$$\vec{E}(Q_R) = \vec{E}^0 \frac{e^{-j\beta s'}}{s''}$$

Double interaction (2/2)

The field at the diffraction point is:

$$\vec{E}\left(Q_{D}\right) = \underbrace{\vec{E}^{0} \cdot \frac{e^{-j\beta s''}}{s''}}_{\vec{E}(Q_{R})} \cdot \underbrace{\mathbf{R}}_{\vec{E}} \cdot \frac{s''}{s' + s''} e^{-j\beta s'} = \vec{E}^{0} \cdot \underbrace{\mathbf{R}}_{\vec{E}} \cdot \frac{e^{-j\beta(s' + s'')}}{s' + s''}$$

Finally, the field at the RX can be computed as:

$$\vec{E}(Rx) = \vec{E}(Q_D) \cdot \underline{\mathbf{D}} \cdot \sqrt{\frac{(s'+s'')}{s[s+(s'+s'')]}} \cdot e^{-j\beta s} =$$

$$= \vec{E}^0 \cdot \underline{\mathbf{R}} \cdot \underline{\mathbf{D}} \cdot \frac{1}{s'+s''} \cdot \sqrt{\frac{(s'+s'')}{s[s+(s'+s'')]}} \cdot e^{-j\beta(s+s'+s'')} =$$

$$= \vec{E}^0 \cdot \underline{\mathbf{R}} \cdot \underline{\mathbf{D}} \cdot \frac{1}{\sqrt{s(s'+s'')(s+s'+s'')}} \cdot e^{-j\beta(s+s'+s'')}$$

Superposition of multiple rays (1/2) (Multipath propagation...)

Superposition of multiple rays (2/2)

The total field at a given position P can be computed through a coherent, vectorial sum of the field of all rays reaching P (difficult to determine though...):

$$\overline{E}(P) = \sum_{i=1}^{N_r} \overline{E}_i(P)$$

Moreover, the delays and angles of departure/arrival of the different ray contributions can be recorded get a multidimensional prediction. In fact the GTP, determining its trajectory, also yields the following parameters for the i-th ray:

> *sⁱ* total unfolded length $t^{i} = \frac{s^{i}}{c}$ propagation delay $\chi^{i} \equiv \left(\theta_{T}^{i}, \phi_{T}^{i}\right)$ angles of departure $\psi^{i} \equiv \left(\theta_{R}^{i}, \phi_{R}^{i}\right)$ angles of arrival

