Deterministic radio propagation modeling and ray tracing

1) Introduction to deterministic propagation modelling
2) Geometrical Theory of Propagation I - The ray concept - Reflection and transmission
3) Geometrical Theory of Propagation II - Diffraction, multipath
4) Ray Tracing I
5) Ray Tracing II - Diffuse scattering modelling
6) Deterministic channel modelling I
7) Deterministic channel modelling II - Examples
8) Project - discussion

Transmission through a wall (1/5)

* Hypotheses: - normal or quasi-normal incidence
- weakly lossy medium

$$
\begin{aligned}
&|\Gamma| \approx\left|\Gamma_{T E}\right|=\left|\frac{\cos \theta_{i}-\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}{\cos \theta_{i}+\sqrt{\left(\frac{n_{2}}{n_{1}}\right)^{2}-\sin ^{2} \theta_{i}}}=\left|\frac{1-\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}}\right|\right. \\
& \frac{S_{r e}}{S_{\text {in }}}=\frac{\left|E_{r e}\right|^{2} / 2 \eta}{\mid E_{\text {in }}^{2} / 2 \eta}=\frac{\left|E_{r e}\right|^{2}}{\left|E_{\text {in }}\right|^{2}} \approx|\Gamma|^{2}
\end{aligned}
$$

Transmission through a wall $(2 / 5)$

In a lossy medium the wavenumber can be written as:

$$
k=\omega \sqrt{\mu_{0} \varepsilon_{c}}=\omega \sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}
$$

The complex relative dielectric constant can be written as:

$$
\varepsilon_{r}=\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}=\frac{\varepsilon}{\varepsilon_{0}}-j \frac{\sigma}{\omega \varepsilon_{0}}
$$

If the medium is weakly lossy $\varepsilon " \ll \varepsilon$ '.
A plane wave propagating through the lossy medium has the expression:

$$
\mathbf{E}=\mathbf{E}_{\mathbf{0}} e^{-j k r}=\mathbf{E}_{\mathbf{0}} e^{-(\alpha+j \beta) r} ; \text { with } \mathrm{jk}=\alpha+\mathrm{j} \beta
$$

Thus:

$$
\begin{aligned}
& k=\omega \sqrt{\mu_{0} \varepsilon_{0} \varepsilon_{r}}=\omega \sqrt{\mu_{0} \varepsilon_{0}} \sqrt{\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}}=\frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}-j \varepsilon_{r}^{\prime \prime}}= \\
& =\frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}} \sqrt{1-j \frac{\varepsilon_{r}^{\prime \prime}}{\varepsilon_{r}^{\prime}}} \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}\left(1-j \frac{\varepsilon_{r}^{\prime \prime}}{2 \varepsilon_{r}^{\prime}}\right)
\end{aligned}
$$

Where the series expansion have been truncated at first order

Transmission through a wall $(3 / 5)$

Therefore:

$$
\begin{aligned}
& j k=\alpha+j \beta \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}\left(\frac{\varepsilon_{r}^{\prime \prime}}{2 \varepsilon_{r}^{\prime}}+j\right) \Rightarrow \\
& \left\{\begin{array}{l}
\alpha \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}\left(\frac{\varepsilon_{r}^{\prime \prime}}{2 \varepsilon_{r}^{\prime}}\right) \\
\beta \approx \frac{\omega}{c} \sqrt{\varepsilon_{r}^{\prime}}
\end{array}\right. \\
& |E(r)|=|E(0)| \cdot e^{-\alpha r} \\
& S(r)=S(0) \cdot e^{-2 \alpha r}
\end{aligned}
$$

Transmission through a wall (4/5)

The reflection coefficient at normal incidence for the air-medium interface is

$$
\Gamma_{0 m}=\frac{1-\sqrt{\varepsilon_{r}}}{1+\sqrt{\varepsilon_{r}}}
$$

The reflection coefficient for the second, medium-air interface is (see the expression of the reflection coefficients for normal incidence)

$$
\Gamma_{m 0}=\frac{\sqrt{\varepsilon_{r}}-1}{1+\sqrt{\varepsilon_{r}}}=-\Gamma_{0 m}
$$

Now if we consider the first interface we have

$$
\frac{S_{r e f l 1}}{S_{i n c 1}}=\frac{\left|\vec{E}_{r e f l 1}\right|^{2}}{\left|\vec{E}_{i n 1}\right|^{2}}=\left|\Gamma_{0 m}\right|^{2}
$$

Transmission through a wall $(5 / 5)$

For power conservation we have:

$$
\begin{aligned}
& S_{i n c 1}=S_{r e f l 1}+S_{t r a s m 1} \Rightarrow 1=\frac{S_{r e f l 1}}{S_{\text {inc } 1}}+\frac{S_{\text {trasm } 1}}{S_{\text {inc } 1}}=\left|\Gamma_{0 m}\right|^{2}+\frac{S_{\text {trass } 1}}{S_{\text {inc } 1}} \\
& \frac{S_{\text {trass } 1}}{S_{\text {inc } 1}}=1-\left|\Gamma_{0 m}\right|^{2}
\end{aligned}
$$

Now the transmitted power at the first interface, properly multiplied by the lossy-medium attenuation factor becomes the incident power at the second interface, therefore we have
$\frac{S_{\text {refl 2 }}}{S_{\text {inc } 2}}=\left|\Gamma_{m 0}\right|^{2}=\left|\Gamma_{0 m}\right|^{2}=|\Gamma|^{2} ; \quad \frac{S_{\text {trans } 2}}{S_{\text {inc } 2}}=\frac{S_{\text {trans } 2}}{S_{\text {transm } 1} e^{-2 \alpha w}}=\frac{S_{\text {trans } 2}}{S_{\text {inc 1 }}\left(1-|\Gamma|^{2}\right) e^{-2 \alpha w}}=1-|\Gamma|^{2}$
Thus:

$$
\frac{S_{\text {trans } 2}}{S_{\text {inc } 1}}=\frac{S_{\text {out }}}{S_{\text {in }}}=\left(1-|\Gamma|^{2}\right)^{2} e^{-2 \alpha w} \Rightarrow L_{t}=\frac{S_{\text {in }}}{S_{\text {out }}}=\frac{e^{2 \alpha w}}{\left(1-|\Gamma|^{2}\right)^{2}}
$$

Example of Transmission Loss

Brick wall: $\varepsilon_{r}{ }^{\prime}=4, \varepsilon_{r}{ }^{\prime \prime}=0.2, w=20 \mathrm{~cm}$

$$
|\Gamma|^{2}=\frac{S_{r e f l 1}}{S_{i n c 1}} \approx\left|\frac{\sqrt{4}-1}{\sqrt{4}+1}\right|^{2}=\frac{1}{9}=0.11 \text { or }-9.6 \mathrm{~dB}
$$

at $1,800 \mathrm{MHz}\left(\lambda_{o}=1 / 6 \mathrm{~m}\right): \quad \alpha=\frac{0.2 \pi}{(1 / 6) \sqrt{4}}=1.88$

$$
\mathrm{L}_{t}=\frac{S_{\text {in }}}{S_{\text {out }}}=(1-0.11)^{2} e^{2(0.2)(1.88)}=2.7 \text { or } 4.3 \mathrm{~dB}
$$

Summary of Reflection and Transmission Loss

Theory

Wall Type	Frequency Band	Ref. loss	Trans. Loss
Brick, exterior	$1.8-4 \mathrm{GHz}$	10 dB	10 dB
Concrete block, interior	2.4 GHz		5 dB
Gypsum board, interior	3.4 GHz	4 dB	2 dB

Measured

Exterior frame	800 MHz $5-6 \mathrm{GHz}$ with metal siding		$4-7 \mathrm{~dB}$ 5 GHz
whad 36 dB			
Brick, exterior	$4-6 \mathrm{GHz}$	10 dB	14 dB
Concrete block, interior	$2.4 / 5 \mathrm{GHz}$		$5 / 5-10 \mathrm{~dB}$
Gypsum board, interior	$2.4 / 5 \mathrm{GHz}$		$3 / 5 \mathrm{~dB}$
Wooden floors	5 GHz		9 dB
Concrete floors	900 MHz		13 dB

(Source: Prof. H.L. Bertoni)

Geometrical Theory of Diffraction

The extension of GO to the category of diffracted rays was first introduced by J. B. Keller in 1961 and is based on the following assumptions ${ }^{[6]}$:
I. A diffracted ray is generated whenever a ray impinges on an edge (or on a vertex)
II. For every diffracted ray the Fermat's principle holds

Diffraction law: the angles between incident / diffracted ray and the edge satisfy "Snell's law applied to diffraction":

$$
\mathrm{n}_{\mathrm{i}} \cdot \sin \theta_{\mathrm{i}}=\mathrm{n}_{\mathrm{d}} \cdot \sin \theta_{\mathrm{d}}
$$

\rightarrow If the rays are in the same material then: $\theta_{d}=\theta_{i}$;
Therefore diffracted rays ouside the wedge belong to the Keller's cone

The diffracted ray $(1 / 3)$

- In urban propagation only straight edges (local field principle) are of interest. Vertex diffraction won't be treated here
- If the impinging wave is plane (or can be approximated so for the local field principle) then the diffracted wave is cylindrical for perpendicular incidence ($\theta_{\mathrm{d}}=\theta_{\mathrm{i}}=\pi / 2$) and conical for oblique incidence (the wavefront is a cone) [7]
- The diffracted wave is so that one caustic coincides with the edge. Therefore the divergence factor of the diffracted wave/ray is different from that of the incident wave/ray (see further on)
- The diffracted ray field can be computed by solving Maxwell's equations for a plane, cylindrical or spherical wave incident on a straight conducting edge [7, 8, 9] and somehow subtracting from the solution the incident wave and the reflected wave(s).
- Then the diffracted field is expanded in a Luneberg-Kline series from which only the first term (high frequency approx.) is kept in order to derive the diffraction coefficients

[^0]
The diffracted ray $(2 / 3)$

The high frequency term has the form:
$\vec{E}^{d}(s)=\vec{E}^{d}\left(O^{\prime}\right) \cdot \sqrt{\frac{\rho_{1}^{d} \cdot \rho_{2}^{d}}{\left(\rho_{1}^{d}+s\right) \cdot\left(\rho_{2}^{d}+s\right)}} \cdot e^{-j \beta s}$

$\rho_{1}{ }^{\mathrm{d}}, \rho_{2}{ }^{\mathrm{d}}=$ curvature radii of the diffracted wave.
One caustic coincides with the edge: $\rho_{2}{ }^{d}$ corresponds to $O^{\prime}-Q_{D}$ where O^{\prime} is the reference point, origin of the coordinate s.

It is useful to choose $O^{\prime}=Q_{D}\left(\rho_{2}{ }^{d}=0 \rightarrow\right.$ simpler expression). However for power conservation reasons $\mathbf{E}^{\mathrm{d}}\left(\mathrm{O}^{\prime}\right) \rightarrow \infty$ for $\mathrm{O}^{\prime} \rightarrow \mathrm{Q}_{\mathrm{D}}$
Since $\mathbf{E}^{\mathrm{d}}(\mathrm{s})$ cannot change with the reference system, therefore it must be:

D is the diffraction matrix, which contains the diffraction coefficients

The diffracted ray $(3 / 3)$

\rightarrow trajectory: Fermat' s principle
\rightarrow Field expression:

$$
\left[\begin{array}{c}
E_{\beta_{0}}^{d} \\
E_{\phi}^{d}
\end{array}\right]=\left[\begin{array}{cc}
D_{s} & 0 \\
0 & D_{h}
\end{array}\right]\left[\begin{array}{c}
E_{\beta_{0}^{\prime}}^{i}\left(Q_{D}\right) \\
E_{\phi^{\prime}}^{i}\left(Q_{D}\right)
\end{array}\right] \cdot A\left(s, \rho^{d}\right) \cdot e^{-j \beta s}
$$

if the proper local reference system is adopted (see figure) then the diffraction matrix reduces to a 2×2 diagonal matrix, otherwise it's a 3×3 matrix
Φ-polarization is called "hard" (TE), β polarizationi is called "soft" (TM)

The divergence factor

If $\rho_{2}{ }^{d} \rightarrow 0$ as shown, then we get : ($\rho_{1}{ }^{\mathrm{d}} \rightarrow \rho^{\mathrm{d}}$)

$$
A\left(\rho^{d}, s\right)=\sqrt{\frac{\rho^{d}}{s \cdot\left(\rho^{d}+s\right)}}
$$

For a straight edge we have:

$$
A\left(\rho^{\mathrm{d}}, s\right)=\left\{\begin{array}{cc}
\frac{1}{\sqrt{\mathrm{~s}}} & \text { for a plane incident wave } \\
\frac{1}{\sqrt{s \cdot \sin \beta_{o}^{\prime}}} & \text { for a cylindrical incident wave } \\
\sqrt{\frac{\rho^{\mathrm{d}}}{\mathrm{~s} \cdot\left(\rho^{\mathrm{d}}+\mathrm{s}\right)}} & \text { for a spherical incident wave }
\end{array}\right.
$$

- For the computation of the diffraction coefficients we refer in the following to a simple case with a cylindrical incident wave.

The diffraction coefficients for a canonical 2D problem

ISB : Incidence Shadow Boundary
RSB : Reflection Shadow Boundary

R I : direct + reflected + diffracted
R II : direct + diffracted
R III : diffracted
Hypotheses:

- unlimited perfectly conducting wedge of angular width WA $=(2-n) \pi \quad(0 \leq n<2)$
- Infinite uniform linear source parallel to the edge with constant current $I_{0} \mathbf{i}_{\mathbf{z}}$
cylindrical incident wave with normal incidence

The diffraction coefficients

Adopting the method described above the following Keller's diffraction coefficients are obtained (Geometrical Theory of Diffraction, GTD) [9]

$$
\begin{aligned}
& D^{S}\left(\phi, \phi^{\prime}, n\right)=\frac{-e^{-j \pi / 4} \cdot \sin (\pi / n)}{n \sqrt{2 \pi \beta}} \cdot\left[\frac{1}{\cos (\pi / n)-\cos \left(\xi^{-} / n\right)}-\frac{1}{\cos (\pi / n)-\cos \left(\xi^{+} / n\right)}\right] \\
& D^{H}\left(\phi, \phi^{\prime}, n\right)=\frac{-e^{-j \pi / 4} \cdot \sin (\pi / n)}{n \sqrt{2 \pi \beta}} \cdot\left[\frac{1}{\cos (\pi / n)-\cos \left(\xi^{-} / n\right)}+\frac{1}{\cos (\pi / n)-\cos \left(\xi^{+} / n\right)}\right] \quad \xi^{+}=\Phi+\Phi^{\prime}
\end{aligned}
$$

Such coefficients have singularities on the shadow boundaries, i.e. when:

$$
\begin{array}{ll}
\xi_{-}=\phi-\phi^{\prime}=\pi & (\text { ISB }) \\
\xi_{+}=\phi+\phi^{\prime}=\pi & (\mathrm{RSB})
\end{array}
$$

Therefore also other, more complicated coefficients have been derived which do not have such singularity: the UTD (Uniform Theory of Diffraction) coefficients

Example (1/2)

Example (2/2)

UTD, considering the diffracted ray and the incident ray

Other notes on GTP

- A single ray can undergo multiple interactions. The resulting ray is therefore a polygonal line and the proper interaction coefficients must be applied at each interaction. The proper divergence factor for the overall piece-wise path must then be applied.
- Reflection and transmission do not change the form of the divergence factor of a ray. Diffraction does.
- Diffraction coefficients for oblique incidence and dielectric wedges have also been derived by some authors
- The interaction called "diffuse scattering" is important but is not treated here. It will be treated further on.

Computation Examples: reflection

For the generic incident astigmatic wave we can write:

The use of the Dyadic Reflection coefficient [8] allows to refer to a fixed reference system

$$
\underline{\underline{\mathbf{R}}}=\Gamma_{/ /}\left(\hat{\mathrm{e}}^{\mathrm{i}} \hat{\mathrm{e}}_{/ /}^{\mathrm{r}}\right)+\Gamma_{\perp}\left(\hat{\mathrm{e}}_{\perp}^{\mathrm{i}} \hat{\mathrm{e}}_{\perp}^{\mathrm{r}}\right)
$$

$$
(\overline{\mathrm{a}} \overline{\mathrm{~b}}) \triangleq\left(\begin{array}{lll}
a_{x} b_{x} & a_{x} b_{y} & a_{x} b_{z} \\
a_{y} b_{x} & a_{y} b_{y} & a_{y} b_{z} \\
a_{z} b_{x} & a_{z} b_{y} & a_{z} b_{z}
\end{array}\right)
$$

Reflection (II)

For a spherical incident wave the expression above becomes ($\rho_{1}=\rho_{2}=s^{\prime}$):

$$
\vec{E}_{r}(s)=\vec{E}^{0} \frac{e^{-j \beta s^{\prime}}}{s^{\prime}} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{s^{\prime}}{s+s^{\prime}} e^{-j \beta s}=\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{e^{-j \beta\left(s+s^{\prime}\right)}}{s+s^{\prime}}
$$

which is equivalent to

Divergence factor for a spherical wave

Incident field in Q_{R}

Diffraction

Diffraction plane

Diffraction coefficients \rightarrow Diffracted field

$$
\left[\begin{array}{c}
E_{\beta_{0}}^{d} \\
E_{\phi}^{d}
\end{array}\right]=\left[\begin{array}{cc}
D_{s} & 0 \\
0 & D_{h}
\end{array}\right]\left[\begin{array}{c}
E_{\beta_{0}^{\prime}}^{i}\left(Q_{D}\right) \\
E_{\phi^{\prime}}^{i}\left(Q_{D}\right)
\end{array}\right] \cdot A \cdot e^{-j \beta s}
$$

A is the divergence factor for the diffracted field. For a spherical incident wave:
$A\left(s^{\prime}, s\right)=\sqrt{\frac{s^{\prime}}{s \cdot\left(s^{\prime}+s\right)}}$

$$
\vec{E}^{i}\left(Q_{D}\right)=\vec{E}^{0 i} \frac{e^{-j \beta s_{s}^{\prime}}}{s^{\prime}}
$$

Therefore we have:

$$
\left[\begin{array}{c}
\vec{E}_{\beta_{0}}^{d} \\
\vec{E}_{\phi}^{d}
\end{array}\right]=\left[\begin{array}{cc}
D_{s} & 0 \\
0 & D_{h}
\end{array}\right]\left[\begin{array}{c}
\vec{E}_{\beta_{0}^{\prime}}^{0 i} \\
\vec{E}_{\phi^{\prime}}^{0 i}
\end{array}\right] \cdot \frac{1}{\sqrt{s \cdot s^{\prime} \cdot\left(s^{\prime}+s\right)}} \cdot e^{-j \beta\left(s\left(s s^{\prime}\right)\right.}
$$

Diffraction (II)

Diffraction plane
$\hat{\boldsymbol{S}} \uparrow \hat{\beta}_{0}$

Using the the Dyadic Diffraction coefficient:

$$
\underline{\underline{\mathbf{D}}}=D_{\mathrm{s}}\left(\hat{\beta}_{0}^{0} \hat{\hat{\beta}_{0}}\right)+D_{h}(\hat{\phi} \hat{\phi})
$$

we have

$$
\bar{E}^{d}=\bar{E}^{0} \cdot \underline{\underline{\mathbf{D}}} \cdot \frac{1}{\sqrt{s \cdot s^{\prime} \cdot\left(s^{\prime}+s\right)}} \cdot e^{-j \beta\left(s+s^{\prime}\right)}
$$

Double interaction (1/2)

Reflection + Vertical Edge Diffraction

Field at the reflection point: $\vec{E}\left(Q_{R}\right)=\vec{E}^{0} \frac{e^{-j \beta s^{\prime \prime}}}{s^{\prime \prime}}$

Double interaction (2/2)

The field at the diffraction point is:

$$
\vec{E}\left(Q_{D}\right)=\underbrace{\vec{E}^{0} \cdot \frac{e^{-j \beta s^{\prime \prime}}}{s^{\prime \prime}}}_{\vec{E}\left(Q_{R}\right)} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{s^{\prime \prime}}{s^{\prime}+s^{\prime \prime}} e^{-j \beta s^{\prime}}=\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}}} \cdot \frac{e^{-j \beta\left(s^{\prime}+s^{\prime \prime}\right)}}{s^{\prime}+s^{\prime \prime}}
$$

Finally, the field at the RX can be computed as:

$$
\begin{aligned}
& \vec{E}(R x)=\vec{E}\left(Q_{D}\right) \cdot \underline{\underline{\mathbf{D}}} \cdot \sqrt{\frac{\left(s^{\prime}+s^{\prime \prime}\right)}{s\left[s+\left(s^{\prime}+s^{\prime \prime}\right)\right]}} \cdot e^{-j \beta s}= \\
& =\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}}} \cdot \underline{\underline{\mathbf{D}} \cdot \frac{1}{s^{\prime}+s^{\prime \prime}} \cdot \sqrt{\frac{\left(s^{\prime}+s^{\prime \prime}\right)}{s\left[s+\left(s^{\prime}+s^{\prime \prime}\right)\right]}} \cdot e^{-j \beta\left(s+s^{\prime}+s^{\prime}\right)}=} \\
& =\vec{E}^{0} \cdot \underline{\underline{\mathbf{R}} \cdot \underline{\underline{\mathbf{D}}} \cdot \frac{1}{\sqrt{s\left(s^{\prime}+s^{\prime \prime}\right)\left(s+s^{\prime}+s^{\prime \prime}\right)}} \cdot e^{-j \beta\left(s+s^{\prime}+s^{\prime \prime}\right)}}
\end{aligned}
$$

Superposition of multiple rays ($1 / 2$)

(Multipath propagation...)

Superposition of multiple rays (2/2)

The total field at a given position P can be computed through a coherent, vectorial sum of the field of all rays reaching P (difficult to determine though...):

$$
\bar{E}(P)=\sum_{i=1}^{N_{r}} \bar{E}_{i}(P)
$$

Moreover, the delays and angles of departure/arrival of the different ray contributions can be recorded get a multidimensional prediction.
In fact the GTP, determining its trajectory, also yields the following parameters for the i-th ray:

$$
\begin{aligned}
& s^{i} \text { total unfolded length } \\
& t^{i}=s^{i} / c \text { propagation delay } \\
& \chi^{i} \equiv\left(\theta_{T}^{i}, \phi_{T}^{i}\right) \text { angles of departure } \\
& \psi^{i} \equiv\left(\theta_{R}^{i}, \phi_{R}^{i}\right) \text { angles of arrival }
\end{aligned}
$$

[^0]: V. Degli-Esposti, "Propagazione e pianificazione nei sistemi d'area"

