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Transmission through a wall (1/5)

* Hypotheses: - normal or quasi-normal incidence
- weakly lossy medium
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Transmission through a wall (2/5)

In a lossy medium the wavenumber can be written as:
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The complex relative dielectric constant can be written as:
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If the medium is weakly lossy £” <<€’ .
A plane wave propagating through the lossy medium has the expression:
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Where the series expansion have been truncated at first order




Transmission through a wall (3/5)

Therefore:
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Transmission through a wall (4/5)

The reflection coefficient at normal incidence for the air-medium interface is
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The reflection coefficient for the second, medium-air interface is (see the expression of
the reflection coefficients for normal incidence)
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Now 1f we consider the first interface we have
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Transmission through a wall (5/5)

For power conservation we have:
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Now the transmitted power at the first interface, properly multiplied by the lossy-medium
attenuation factor becomes the incident power at the second interface, therefore we have
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Example of Transmission Loss

Brick wall: €'=4, £"=0.2, w=20 cm
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Summary of Reflection and
Transmission Loss

Theory
Wall Type Frequency Band | Ref. loss Trans. Loss
Brick, exterior 1.8 -4 GHz 10 dB 10 dB
Concrete block, interior 2.4 GHz 5dB
Gypsum board, interior 3.4 GHz 4 dB 2 dB
Measured
Exterior frame 800 MHz 4-7dB
5-6 GHz 9-18dB
with metal siding 5 GHz 36 dB
Brick, exterior 4 -6 GHz 10 dB 14 dB
Concrete block, interior 2.4/5 GHz 5/5-10dB
Gypsum board, interior 2.4/5 GHz 3/5dB
Wooden floors 5 GHz 9dB
Concrete floors 900 MHz 13 dB

(Source: Prof. H.L. Bertoni)




Geometrical Theory of Diffraction

The extension of GO to the category of diffracted rays was first introduced by J. B. Keller
in 1961 and is based on the following assumptions!® :

I. 4 diffracted ray is generated whenever a ray impinges on an edge (or on a vertex)

I1. For every diffracted ray the Fermat's principle holds

1L

Diffraction law: the angles between incident / diffracted ray and

0, the edge satisfy “Snell’s law applied to diffraction”:
'l .siNOG. =n, - Si
AN, N, -sinB, = ny - sinB
CoLe =» If the rays are in the same material then: 6,=6;.
Therefore diffracted rays ouside the wedge belong to the
? Keller’s cone
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Incident ray




The diffracted ray (1/3)

» In urban propagation only straight edges (local field principle) are
of interest. Vertex diffraction won’t be treated here

« If the impinging wave is plane (or can be approximated so for the
local field principle) then the diffracted wave is cylindrical for
perpendicular incidence (0,=6=m/2) and conical for oblique

incidence (the wavefront is a cone) [7]

« The diffracted wave is so that one caustic coincides with the edge. Therefore the
divergence factor of the diffracted wave/ray is different from that of the incident
wave/ray (see further on)

» The diffracted ray field can be computed by solving Maxwell’s equations for a plane ,
cylindrical or spherical wave incident on a straight conducting edge [7, 8, 9] and
somehow subtracting from the solution the incident wave and the reflected wave(s).

» Then the diffracted field 1s expanded in a Luneberg-Kline series from which only the
first term (high frequency approx.) is kept in order to derive the diffraction coefficients




The diffracted ray (2/3)

The high frequency term has the form:
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p,4, p,9 = curvature radii of the diffracted wave.

One caustic coincides with the edge: p,9 corresponds to O’-Qy
where O’ 1s the reference point, origin of the coordinate s.

It is useful to choose O’=Qp (p,*=0 =>» simpler expression). However for power conser-
vation reasons E4O’) = « for O’=» Qp

Since E9(s) cannot change with the reference system, therefore it must be:
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D is the diffraction matrix, which contains the diffraction coefficients




The diffracted ray (3/3)
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Difftaction plane => trajectory: Fermat s principle

A =» Field expression:
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if the proper local reference system is adopted
(see figure) then the diffraction matrix reduces
to a 2x2 diagonal matrix, otherwise it’s a 3x3

matrix

®-polarization is called “hard” (TE), B-
polarizationi is called “soft” (TM)

_Incjdence plane




The divergence factor

If p,9— 0 as shown, then we get :

(P4 — p9)

For a straight edge we have:

A(pd,s)=<
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I3 for a plane incident wave
Js
1

\Js-sin 3

for a cylindricalincident wave

d
P—d for a spherical incident wave
s-(p*+s)

 For the computation of the diffraction coefficients we refer in the
following to a simple case with a cylindrical incident wave.




The diffraction coefticients for
a canonical 2D problem

ISB : Incidence Shadow Boundary

RSB : Reflection Shadow Boundary

R 1 : direct + reflected + diffracted
R IT : direct + diffracted
R III : diffracted

N Y A Hypotheses:
\\ « unlimited perfectly conducting wedge of angular
.o S width WA=2-n)t (0<n<2)
Pp.®) S o 5 * Infinite uniform linear source parallel to the edge
s X with constant current I i,

cylindrical incident wave with normal incidence




The diffraction coefticients

Adopting the method described above the following Keller’s diffraction coefficients
are obtained (Geometrical Theory of Diffraction, GTD) [9]
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Such coefficients have singularities on the shadow boundaries, i.e. when:

S-=¢-¢’=m (ISB)
St=¢+¢=m (RSB)

Therefore also other, more complicated coefficients have been derived which do
-not have such singularity: the UTD (Uniform Theory of Diffraction) coefficients
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Example (1/2)

Diffraction Coefficients Comparison: n=1.5, phi = 45 deg

| D sgqri(2%k¥pid |

=20 0 20 40 60 80 100 120
Theta (deg)

kirchhoff Coefficient —8—

UTD Soft Coefficient —¢— keller Soft Coefficient ——

V. Degli-Esposti, “Propagazione e pianificazione nei sistemi d’area’




Example (2/2)

UTD, considering the diffracted ray and the incident ray
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V. Degli-Esposti, “Propagazione e pianificazione nei sistemi d’area”




Other notes on GTP

A single ray can undergo multiple interactions. The resulting ray is therefore a
polygonal line and the proper interaction coefficients must be applied at each
interaction. The proper divergence factor for the overall piece-wise path must
then be applied.

 Reflection and transmission do not change the form of the divergence factor of
a ray. Diffraction does.

 Diffraction coefficients for oblique incidence and dielectric wedges have also
been derived by some authors

» The interaction called “diffuse scattering” is important but is not treated here.
It will be treated further on.




Computation Examples: reflection

For the generic incident astigmatic wave we can write:

E(s)= E(o) - R(O,8) - PP o
—— = ~ = (Pl +S)'(P2 +S) Phase factor
ﬁeld at reference  Reflection cpefﬁcient . g )
POG(DIEE (Dt divergence or spreading
factor

The use of the Dyadic Reflection coefficient [8]
allows to refer to a fixed reference system

. Al AT AL AT
R=T, (e//e// )"‘ Iy (eJ_eJ_ )

ab, ab, ab.
(Eg)é ab. ab, apb,
ab, ab, ab. reference point

V. Degli-Esposti, “Urban propagation modelling and ray tracing”




Reflection (I)

2 (s)

For a spherical incident wave the
expression above becomes (p,; =p, =s’):

B (s)=B S RS o= fO.R.S
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which 1s equivalent to :
Divergence

factor for a
spherical wave
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V. Degli-Esposti, “Urban propagation modelling and ray tracing”




Diffraction plane

Diffraction

Diffraction coefficients =» Diffracted field

By

E; (0,)

(0,)

A e—jﬂs

A 1s the divergence factor for the diffracted
field. For a spherical incident wave:

A(S ,S

Therefore we have:
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V. Degli-Esposti, “Urban propagation modelling and ray tracing”



Diffraction plane

Incidence plane

Diffraction (II)

Using the the Dyadic Diffraction coefficient:

2 =D, (:BA(')BO )+Dh (éq;)

we have
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V. Degli-Esposti, “Urban propagation modelling and ray tracing”



Double interaction (1/2)

Reflection + Vertical Edge Diffraction

Buildings height [m]
. 50

~ L IBS
Field at the reflection point: E (QR )= E’ e—,,
S

V. Degli-Esposti, “Urban propagation modelling and ray tracing”




Double interacti

The field at the diffraction point is:

E(0r)
Finally, the field at the RX can be computed as:
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Superposition of multiple rays (1/2)

(Multipath propagation...)
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Superposition of multiple rays (2/2)

The total field at a given position P can be computed through a coherent,
vectorial sum of the field of all rays reaching P (difficult to determine though...):

Moreover, the delays and angles of departure/arrival of the different ray
contributions can be recorded get a multidimensional prediction.

In fact the GTP, determining its trajectory, also yields the following parameters
for the 1-th ray:

s' total unfolded length
ti=% propagation delay

X' = (9;,(]);) angles of departure

y'= (QZ,Q);) angles of arrival
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