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Deterministic radio propagation 
modeling and ray tracing 

1)   Introduction to deterministic propagation modelling 

2)   Geometrical Theory of Propagation I - The ray concept – Reflection 
and transmission 

3)   Geometrical Theory of Propagation II - Diffraction, multipath 

4)   Ray Tracing I 

5)   Ray Tracing II – Diffuse scattering modelling 

6)   Deterministic channel modelling I 

7)   Deterministic channel modelling II – Examples 

8)   Project  - discussion 



Transmission through a wall (1/5) 
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(Source: Prof. H.L. Bertoni) 

 * Hypotheses: - normal or quasi-normal incidence 
               - weakly lossy medium 
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Transmission through a wall (2/5) 
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In a lossy medium the wavenumber can be written as: 

The complex relative dielectric constant can be written as: 

If the medium is weakly lossy ε” << ε’. 
A plane wave propagating through the lossy medium has the expression: 

Thus: 

Where the series expansion have been truncated at first order 



Transmission through a wall (3/5) 

  

jk =α + jβ ≈ ω
c

εr
′ εr

′′

2εr
′
+ j

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟
⇒

α ≈ ω
c

εr
′ εr

′′

2εr
′

⎛

⎝
⎜
⎜

⎞

⎠
⎟
⎟

β ≈ ω
c

εr
′

⎧

⎨

⎪
⎪

⎩

⎪
⎪

Therefore: 
 

  

E(r) = E(0) ⋅e−αr

S(r) = S(0) ⋅e−2αr



Transmission through a wall (4/5) 
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The reflection coefficient at normal incidence for the air-medium interface is 

The reflection coefficient for the second, medium-air interface is (see the expression of 
the reflection coefficients for normal incidence) 

Now if we consider the first interface we have 



Transmission through a wall (5/5) 
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For power conservation we have: 

Now the transmitted power at the first interface, properly multiplied by the lossy-medium 
attenuation factor becomes the incident power at the second interface, therefore we have 

Thus:  



Example of Transmission Loss 

Brick wall:  ε r'=4,  ε r"=0.2,  w=20 cm

              Γ 2 =
Srefl1
Sinc1

≈ 4 −1
4 +1

2

= 1
9

=0.11  or   -9.6dB

at 1,800 MHz (λo=1/6 m):  α = 0.2π
1 6( ) 4

= 1.88

              Lt =
Sin
Sout

= 1− 0.11( )2 e2(0.2)(1.88) = 2.7  or  4.3dB

(Source: Prof. H.L. Bertoni) 



Summary of Reflection and 
Transmission Loss 

Wall Type Frequency Band Ref. loss Trans. Loss 
Brick, exterior 1.8 - 4 GHz 10 dB 10 dB 
Concrete block, interior 2.4 GHz 5 dB 
Gypsum board, interior 3.4 GHz 4 dB 2 dB 

Theory	



Measured	


Exterior frame 
 
          with metal siding 

800 MHz 
5 - 6 GHz 
5 GHz 

4 - 7 dB 
9 - 18 dB 
36 dB 

Brick, exterior 4 - 6 GHz 10 dB 14 dB 
Concrete block, interior 2.4 / 5 GHz 5 / 5 - 10 dB 
Gypsum board, interior 2.4 / 5 GHz 3 / 5 dB 
Wooden floors 5 GHz 9 dB 
Concrete floors 900 MHz 13 dB 
(Source: Prof. H.L. Bertoni) 



The extension of GO to the category of diffracted rays was first introduced by J. B. Keller 
in 1961 and is based on the following assumptions[6] : 
 
 
I. A diffracted ray is generated whenever a ray impinges on an edge (or on a vertex) 
 
II. For every diffracted ray the Fermat’s principle holds 

Incident ray 

Keller’s 
cone 

Diffraction law: the angles between incident / diffracted ray  and 
the edge satisfy “Snell’s law applied to diffraction”: 

 
 If the rays are in the same material then: θd=θi; 

 Therefore diffracted rays ouside the wedge belong to the 
 Keller’s cone 

ddii sinnsinn θ⋅=θ⋅

Geometrical Theory of Diffraction 

θd 

θi 
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•  In urban propagation only straight edges (local field principle) are 

of interest. Vertex diffraction won’t be treated here 

•  If the impinging wave is plane (or can be approximated so for the 
local field principle) then the diffracted wave is cylindrical for 
perpendicular incidence (θd=θi=π/2) and conical for oblique 
incidence (the wavefront is a cone) [7] 

P 

D 

QD edge 

The diffracted ray (1/3) 

•  The diffracted wave is so that one caustic coincides with the edge. Therefore the 
divergence factor of the diffracted wave/ray is different from that of the incident 
wave/ray (see further on) 

•  The diffracted ray field can be computed by solving Maxwell’s equations for a plane , 
cylindrical or spherical wave incident on a straight conducting edge [7, 8, 9] and 
somehow subtracting from the solution the incident wave and the reflected wave(s). 

•  Then the diffracted field is expanded in a Luneberg-Kline series from which only the 
first term (high frequency approx.) is kept in order to derive the diffraction coefficients 

S 
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 The high frequency term has the form: 
 
 
 
 
 

 ρ1
d, ρ2

d  = curvature radii of the diffracted wave. 
 One caustic coincides with the edge: ρ2

d corresponds to O’-QD 
where O’ is the reference point, origin of the coordinate s.  
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 It is useful to choose O’=QD  (ρ2
d=0   simpler expression). However for power conser-

vation reasons Ed(O’)  ∞   for   O’  QD  
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The diffracted ray (2/3) 
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D is the diffraction matrix, which contains the diffraction coefficients 
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A ρd ,s( ) = ρd

ρd + s( ) ⋅ swith: 
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The diffracted ray (3/3) 
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if the proper local reference system is adopted 
(see figure) then the diffraction matrix reduces 
to a 2x2 diagonal matrix, otherwise it’s a 3x3 
matrix 
 
Φ-polarization is called “hard” (TE), β-
polarizationi is called “soft” (TM) 

'ŝ'
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QD 

Incidence plane 

Diffraction plane 

s 

 trajectory: Fermat’s principle 
 
 Field expression: 
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If  ρ2
d → 0  as shown,  then we get : 

(ρ1
d → ρd) A ρd , s( ) = ρd

s ⋅ ρd + s( )

For a straight edge we have: ( )
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The divergence factor 

•   For the computation of the diffraction coefficients we refer in the 
following to a simple case with a cylindrical incident wave. 
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Source Region I 

Region II 

Region III 

 ISB : Incidence Shadow Boundary 
   
 RSB : Reflection Shadow Boundary 
   

 
  R I   : direct + reflected + diffracted 
  R II  : direct + diffracted 
  R III : diffracted 

X 

Y 

S(ρ’,Φ’) 

P(ρ,Φ) 

WA = (2-n) π	


σ = ∞ 

Hypotheses: 
•  unlimited perfectly conducting wedge of angular 

width  WA =(2-n)π   (0 ≤ n < 2) 
•  Infinite uniform linear source parallel to the edge 

with constant current I0 iz  

 cylindrical incident wave with normal incidence 

The diffraction coefficients for  
a canonical 2D problem 

wedge 

Φ’ 
Φ	
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Adopting the method described above the following Keller’s diffraction coefficients 
are obtained (Geometrical Theory of Diffraction, GTD) [9] 
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The diffraction coefficients 

ξ- = Φ - Φ’ 
ξ+ = Φ + Φ’ 

Such coefficients have singularities on the shadow boundaries, i.e. when: 
 
 
 
 
Therefore also other, more complicated coefficients have been derived which do 
not have such singularity: the UTD (Uniform Theory of Diffraction) coefficients 

 

ξ- = φ  - φ’ = π      (ISB)
ξ+ = φ  + φ’ = π    (RSB)
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Φ’ = 45	


P(10, Φ) 

θ	



Hi 

Ei 

Example (1/2) 
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UTD, considering the diffracted ray and the incident ray 

Φ’	



P(10,Φ) 
θ	



Hi 

Ei 

Example (2/2) 
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Other notes on GTP 

•  A single ray can undergo multiple interactions. The resulting ray is therefore a 
polygonal line and the proper interaction coefficients must be applied at each 
interaction. The proper divergence factor for the overall piece-wise path must 
then be applied.  

•  Reflection and transmission do not change the form of the divergence factor of 
a ray. Diffraction does. 

•  Diffraction coefficients for oblique incidence and dielectric wedges have also 
been derived by some authors 

•  The interaction called “diffuse scattering” is important but is not treated here. 
It will be treated further on. 
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Computation Examples: reflection 
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The use of the Dyadic Reflection coefficient [8] 
allows to refer to a fixed reference system 

For the generic incident astigmatic wave we can write: 
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Reflection (II) 

  
 For a spherical incident wave the 
expression above becomes (ρ1 =ρ2 = s’): 
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Diffraction 
Diffraction coefficients  Diffracted field 

A is the divergence factor for the diffracted 
field. For a spherical incident wave: 

Therefore we have: 
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Diffraction (II) 
  Using the the Dyadic Diffraction coefficient: 

we have 
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Double interaction (1/2) 
     Reflection + Vertical Edge Diffraction 
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Double interaction (2/2) 
 The field at the diffraction point is: 
 
 
 
 Finally, the field at the RX can be computed as: 
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Diffraction 

Microcell 

Macrocell 

Diffuse 
scattering 

Reflection 

Superposition of multiple rays (1/2) 
(Multipath propagation…) 
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Moreover, the delays and angles of departure/arrival of the different ray 
contributions can be recorded get a multidimensional prediction. 
In fact the GTP, determining its trajectory, also yields the following parameters 
for the i-th ray: 

  

si   total unfolded length 

t i =si

c   propagation delay

χ i ≡ θT
i ,φT

i( )   angles of departure

ψ i ≡ θR
i ,φR

i( )   angles of arrival

The total field at a given position P can be computed through a coherent, 
vectorial sum of the field of all rays reaching P (difficult to determine though…): 

Superposition of multiple rays (2/2) 

  
E P( ) = Ei P( )

i=1

Nr

∑


